
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 
the text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and continuing 
from left to right in equal sections with small overlaps.

ProQuest information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-06G0

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

LANCZOS ALGORITHM WITH REORTHOGONIZATION FOR SUPERIOR 

SOLUTION IN SOLVING LARGE EIGENVALUE PROBLEM

A THESIS

Presented to the Department o f Mechanical Engineering 

California State University, Long Beach

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science

By Montri Ratanajirasut

B.S., 1998, Kasetsart University in Bangkok 

December 2002

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

UMI Number: 1413260

___ <0>

UMI
UMI Microform 1413260 

Copyright 2003 by ProQuest Information and Learning Company. 
Ail rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

WE, THE UNDERSIGNED MEMBERS OF THE COMMITTEE, 

HAVE APPROVED THIS THESIS

LANCZOS ALGORITHM WITH REORTHOGONIZATION FOR SUPERIOR 

SOLUTION IN SOLVING LARGE EIGENVALUE PROBLEM

By

Montri Ratanajirasut

COMMITTEE MEMBERS

Ortwin A. Ohtmer, Dr.-Ing., (Chair) Mechanical Engineering

C. Barclay Gilpin, Ph.D. Mechanical Engineering

Torabzadeh Jalal, Ph.D. Mechanical Engineering

ACCEPTED AND APPROVED ON BEHALF OF THE UNIVERSITY

h f  ' I ' f ’
Hamid Hefazi, P] 
Department C partmeM of Mechanical and Aerospace Engineering

California State University, Long Beach 

December 2002

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

ABSTRACT

LANCZOS ALGORITHM WITH REORTHOGONIZATION FOR SUPERIOR 

SOLUTION IN SOLVING LARGE EIGENVALUE PROBLEM

By

Montri Ratanajirasut 

December 2002

In this thesis, eigenvalue/eigenvector problem is computed by a 

combination of the most effective eigenproblem solving iteration, Lanczos 

algorithm, and Rayleigh Ritz analysis. This combination is the fastest method to 

obtain accurate first few eigenvalues today. The Lanczos algorithm reduces a very 

large and complex system matrix to the same-sized tridiagonal matrix. The 

Rayleigh Ritz analysis is used to reverse the eigenvalues of tridiagonal matrix to 

the eigenvalues of the original system.

Nevertheless, this algorithm has one huge disadvantage when working with 

a large system or a large number of steps. Unit roundoff error of computer will 

grow the computation error along the iteration steps that have been computed. The 

amount of produced error will loosen orthogonality between working vectors as 

iteration goes on. This is called “Loss of Orthogonality.” This error will 

eventually destroy the accuracy of the result.

The method of reorthogonalization is used to fix this problem. In Lanczos

algorithm programming package, written on FORTRAN 90 platform, several

subroutines are used to detect loss of orthogonality and perform the

1
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reorthogonalization. The loss of orthogonality is detected when the error bounds 

of computation grow greater than what is called semi-orthogonality tolerance. The 

size of semi-orthogonality tolerance is based on computer’s precision, unit 

roundoff error.

With reorthogonalization, accuracy of the computation is controlled. As a 

result, the precision of the solution is supremely accurate and fast obtained. 

Furthermore, a few subroutines were written to prevent a critical case when there 

are 2 very close eigenvalues converged at the same time. This will cause a 

difficulty to calculate the eigenvector of each eigenvalue.
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CHAPTER 1 

FUNDAMENTAL OF EIGENVALUE PROBLEM 

Introduction

Mechanical engineers categorize mechanical engineering problems into two 

categories, Dynamic and Static system problem. In many mechanical applications, 

the solution of the problem could be either unique or multiple.

In the case of a system that has multiple solutions or mode shapes, different 

results of mode shapes occur under different initial conditions, system environments 

and/or system disturbances. Mechanical engineering problems that deal with 

multiple results and mode shapes are called “Eigenvalue/Eigenvector problems,” or 

“Eigenproblems.”

In mechanical engineering problems, Eigenvalue problem is used exclusively 

in 3 fields of problems; Buckling Analysis, Vibration Analysis and Heat Transfer 

Analysis.

In Bucking analysis, eigenproblem is used mainly in order to find the critical 

value that causes a mechanical system to break down by buckling. In Vibration 

Analysis, it is used mainly in order to find specific critical values or resonance 

frequencies of each mode shape of a system. In Heat Transfer Analysis, it involves 

heat capacity and heat conductivity.

The purpose of solving eigenproblems is to find thermal frequencies and 

corresponding mode shapes, which are eigenvalue and eigenvector respectively.

1
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One eigenproblem might have multiple eigenpairs, which is depending on the size of 

the system matrices. One eigenpair consists of 1 eigenvalue and its corresponding 

eigenvector. A standard eigenvalue/eigenvector problem equation can be specified 

as:

M M  = A{v}

when [a ] is a symmetric system matrix 

{v} is an Eigenvalue 

A is an eigenvector

Generalized Eigenvalue/Eigenvector Problem and Its Transformation

Some mechanical engineering problems are already in the standard 

eigenproblem form; but many problems are not in the form by nature. Fortunately, 

generalizing these problems into a form called generalized eigenproblem is possible. 

Later, these formed equations can be transformed again into the standard 

eigenproblem form by using matrix factorization technique.

Before starting the detailed derivation, some important properties must be 

well understood. The Cholesky factorization is described in [10] pages 121-127.

The definition of orthogonal vectors is also explained in [10] pages 129-140. Given 

a dynamic problem in engineering:

M v M M M  (i)

[K] and [M] represent Stiffness and Mass-matrices, respectively. The 

Cholesky factorization applied to the Mass-matrix with [c], nonsingular matrix, the 

result is

M = [ c i c r

Substituting it into equation (1), obtaining

2
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M vM I c I c F M
Then, pre-multiplying by [c]”1 to both sides

[c]-'Mv}=4cr[cIcf{v}
In case of a diagonal mass matrix, [M], applying the “lumped” mass matrix 

approach for large problems, [C] and [C]'1 are calculated without applying the 

factorization procedure. The last equation can be rewritten,

\k \ £}= /ijy} (2)

with W = [cf{v}  and \k \ =

Shifting Eigenvalues 

This procedure plays a role of improving the approximation’s precision of 

the solution. Most of the times, mechanical engineers shift Eigenvalue if rigid body 

modes are not eliminated by special boundary conditions, the eigenvalues for rigid 

body modes are 0. To avoid this, shifting is 

Let [ K l  =[K]+a[M] 

with the shift, cr, being a positive number.

Now the shifted eigenvalue problem can be shown below,

[ * ] > } - 0 ) 

or M  {v} = (A—<r)[M]{v} 

where A .-a  = p

Approximate Solution Techniques for Eigenvalue Problems 

In calculation of any mechanical engineering system, it will be too costly or 

impossible to find an exact solution of a large system, especially with a dynamic 

system. Because of this reason, mechanical engineers use an efficient 

approximation method to find a highly accurate solution instead of an exact one.

3
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There are many approximation techniques available to use, such as Static 

condensation, Discrete Rayleigh-Ritz reduction and Subspace iteration.

Each technique has its own advantages and disadvantages. However, with 

current technology of high speed and calculation accuracy personal computer, 

Lanczos Algorithm has 2 big advantages over the others. First, it works in a simple 

form. Second, it requires a very small number of iterations to pursue fine system’s 

eigenvalues.

With these advantages, mechanical engineers start applying this technique 

widely in eigenvalue/eigenvector problems especially in finite element method, 

which deal with a huge number of matrix size.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

CHAPTER 2

THEORETICAL BACKGROUND OF LANCZOS ALGORITHM

Introduction

Even though Lanczos algorithm was originally developed for tridiagonalizing 

matrices purpose; combining with Rayleigh-Ritz method, the algorithm is a powerful 

eigenvalue solver.

Once matrices in a generalized eigenproblem form are tridiagonalized, 

eigenvalues and eigenvectors can be easily calculated by applying Rayleigh-Ritz 

method.

Lanczos Algorithm has a great advantage due to its simplicity of calculation and 

spectacularly small number o f iterations requirement. However, in the early years of 

the application of the algorithm, the solution by the approach had disappointed 

engineers. The precision of the solution was not acceptable. The problem was caused 

by the computer roundoff error or computer precision. This computer error 

dramatically propagates the damage o f the solution precision every step o f iteration.

For more information, see [2] on pages 1-13.

Lanczos algorithm is based on the orthogonality property of Lanczos vector

series and Ritz vector series calculated with the Mass-Stiffness matrices, see [3]. As the

Lanczos iterations are running, the round-off error continues loosening orthogonality o f

Lanczos vectors and Ritz vectors dramatically. Fortunately, this problem could be

5
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solved by the procedure of reorthogonalization, so the orthogonality of the vectors is 

recalled. Therefore, precision and reliability of the algorithm are also recalled. 

Orthogonality and its recovering are the topics of the following chapter.

Real Eigenvalue Requirement 

Many believe that just because [AT] and [Af]are symmetric; the calculated 

eigenvalues of the system would be real. Unfortunately, this is not true. The only 

working criteria to ensure real eigenvalues is that (p[AT]+ t\M  ]) must be positive- 

definite for some choice of real p  and r .

This is the only way to guarantee that the system posses real eigenvalues. 

However, it is hard to find out those variables’ value. However, both [Af] and \m \ are 

positive-definite if  generated within the Finite Element numerical procedure.

Orthogonality of Eigenvectors 

In an undamped Mechanical system, the characteristic equation can be written as 

m x  = kx 

or armx  = kx

Written for an arbitrary number o f  degrees o f freedom in matrix notation as

M x ,} =  sr[M ]{x,) (4)

A discussion of how the characteristic system relates to Lanczos Algorithm is 

held below.

Assigning index i, j  to the equation (4),

6
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Pre-calculating equations above by k  }r and (ry }r , they become 

k y  }r  [K  ] f c  } =  7 k y  }r  [M ]{xt.}

k Y iK ]{xj k }r [w Iky}
Multiplying both equations from left by \m \ x

k y  }r  iM  1"‘ lK  I k ,  }=*>2 k y  }r  k }

k  }r  [M  ]"1 lK  Ik y  } =0)2 k  }r  k y }
From equation (7) and (8), they become

— / )
Since it is assumed that cot * coj,

{x, f  k y } =  8a =  (co n s tan t) fo r  H

0 for i *  j  

8  is named Kronecker symbol 

It is said the eigenvectors are orthogonal. Applying (10) into (7), becoming

k y  Y \M  f 1 lK  J  k } = 0)2 k y  h !

or jwrM k} = ̂ fk}
or k y  Y  lK  f c  } =  0)2 k y  Y tM  I k }

comparing (12) and (13),

{ry }r [M ] k  } = Sij (eigenvectors are also mass-orthogonal)

= cofgij (eigenvectors are also stiffness-orthogonal) 

j k j  [m } |^ | = [/] Transformation to generalized coordinates

Transformation to generalized coordinates

7
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with

*>l2 0 0 0 0
0 <y,2 0 0 0
0 0 • 0 0
0 0 0 • 0
0 0 0 0 0>n

m = [ m * 2k*3 }...••{*,}]

The powerful “Modal-Analysis” in dynamic is based on equation (14) to (17).

The Gram-Schmidt Orthogonalization Process 

This procedure is very useful and widely used for solving a large-not bended 

linear system of equations. Also, it is used for orthogonalization in Lanczos algorithm. 

The formulas below are named Gram-Schmidt procedure.

The resulted vectors o f this procedure are all orthogonal to each other. Solving 

a linear system of equation using Gram-Schmidt orthogonalization process is an 

effective method in solving system of equation with full coefficient matrices. For 

bended-matrices, the Cholesky-Gauss procedure is more efficient. The procedure 

transforms the linear system into an upper-diagonal matrix, which can be solved easily. 

The Gram-Schmidt orthogonalization procedure is specified below.

F o r: 1 < i < m

fa  } = au, f a  }+ ai f a  } + .........+ a , - x . i  fa - i}+ atJ f a }

With

a  „ _ j _
 jv  ’ ^  ~ N .  ,a - 'J ~ N. ' N,

8
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if, - U y ^ } J -  - ( { / m , } / ) 3 <18>

Solving Linear System of Equation Using Gram-Schmidt 

Here is an application of Gram-Schmidt procedure to solve a linear system of 

equations. For instance, one simple will be solved. Given a linear system of equation

" 2 - 1  0  ‘ V 3 ’

- 1 5 / 2  - 1 X 2 .  =  V 2 - 2

_ 0 - 1  4 / 3 _ * 3 . 1

when

The equation can be rewritten as

l/l k  + {ft  k i  + \Ji k  = {c}

{/;}=

and

' 2 - 1  ' ■ 0 '

- 1 • ;  [ / ,}= ■ 5 / 2 > ; { / ; } = * - 1

0 - 1 4 / 3

{c} = V2

Appling Gram-Schmidt orthogonalization to the vector fj,

i= i ;

AT,=V5; * , , =  '

A =

i = 2;

0.894
-0.447

0

k  = ({/; T l / i  } -  ( l / i  >r })r I '1 = ((3 3 /4 )-4 .0 4 6 ) ''2

= 2.050

ax ,=0.981

(19)
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■ - 3 ;  W =

0.389
0.781

-0.488

N 3 =0.726

a, 3 =-0.616 ; a , 3 =1.972

=

0.216
-0.439
0.874

Rewriting { fx }x, + {/, }x, + {/j }x3 = {c} as

n , y ,  }*, + {w2 & } + ( y 2 y  y } %  }}*, + {(at, y ,} + ({/, y  y ,  })&}

0r +(wi2{^l} + M22{^2})x2 + («,3 fax }+ *23 {<t>2 } + “33 })*3 = fc} (20)

with

w22 = :'I_: u33 = {(/j } y ^  }}

U„ = AT,

^  te ]  = [ W  fe }  {*,}]

with

M [ qM i ]

obtaining,

M - f e M

\q Y[Q\uV c}={c }

[u \x } = [e r  {c}= {c}'

(21)

(22)

10
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Note that [U] is an upper triangular matrix which is easy to solve. Now, use 

backward-substitution to solve for {X}, which is a vector o f xi, X2 and X3

W]2 = - 2.012

U-n = 2.050 

«ia  = -1 .432

u.. = 0.726

The equation of matrices below represents matrices in equation (22) directly.

"2.236 - 2.012 0.447 ' *1 "0.894 -0.447 0 '4.243 '2.529
0 2.050 -1.432 X2 " = 0.389 0.781 -0.488 2.828 ► = «3.170
0 0 0.726 *3. 0.216 0.439 0.874 1.4! 4 3.394

solving by backward substitution,

x3 =4.675 
x, =4.812 
x, =4.527

The solution is very close to the actual solution. However, it should be more precise 

than shown. It is due to round-off error and limitation o f 4-decimal calculation.

{*} =
4.525
4.807
4.666

Lanczos Algorithm Derivation 

Lanczos algorithm is used for developing a tridiagonal matrix from the 

generalized eigenvector system. In general mechanical problems, [x] and [m ] 

are calculated from the mechanical system using the Finite Element Method. Also, 

shifting o f eigenvalues can be possible as in subchapter described earlier.

11
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K M = 4 » d M (23)

with [Ka] = [K]-cr[M]

, and <7 is the shifting value

With the provided starting vector, {r}, basic iterations such as inverse iteration 

or power method calculate a sequence o f vectors called Krylov sequence below.

Similarly, Lanczos iteration constructs a sequence as Krylov sequence as well. 

But, the difference is Lanczos iteration uses the successful vector in sequence and 

Gram-Schmidt orthogonalization process to obtain the best approximation of 

eigenvector. Instead o f the sequence above, Lanczos iteration will compute the 

sequence below

If the stiffness matrix cannot be inverted for each step within the Krylov 

sequence a linear system o f equations must be solved.

The ongoing elements of this sequence are computed with Gram-Schmidt 

Orthogonalization process, which is described previously. Note that each vector, {r}j, 

after the Mass-Stifftiess orthogonalization is named {q}j. During each step of Lanczos 

iteration, a, and pi are obtained. These values are components of a tridiagonalized 

matrix.

(24)

(25)

K M  =M<i

12
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The derivation of the Lanczos algorithm will be discussed in more detail. 

Assuming that the first j Lanczos steps have been performed and a;, (3; and Lanczos 

vectors, {<?},, with < j, have been found and the construction of {q}M is undertaken. 

Because of their Mass-Stiffhess orthogonality property, all Lanczos vectors must satisfy 

the condition below.

\M ] My =<^= 1 for with i = j,
*

0 for with i ^  j 

with Sy the Kronecker symbol

To calculate My+i> firstly orthogonalization of {v}yagainst the j Lanczos vector, 

is taken {#}y

M , k l ' M  {'•)},. c « )

Due to the definition

m i  =  K r M  w } ;

- forM
“ k r N w , ,  (27)

Similarly, vy_, is also the vector that was M-orthogonalized against the 1st j-1 

Lanczos vectors ( My-i> My-2> {?}y_3,—-) to obtain My- Therefore,

{v}y-i = Z  M r M< (28)
/=!

From equation (27) and (28),

M , (29)
i=I

13
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From equation (28) and (29),

R  £ W «  H X t 'M ]  feL (30)
<=i

Recall (28) and (29), instead o f summing up to j-1, the 2nd term o f (30) can be written as

h = h Im ' M  {?},• + 1=1
Now, it is defined that

R = [ * £ ' M « } ,  (3i)

In general, it is assumed that this vector contains elements from each of 

preceded vectors, so

f} , = R  + <*j fa}/ + Pj-x + .....  (32)

(r}y. is called pure component of R -

ctj and Pj are amplitudes of preceding Lanczos vector contained in R

multiplying R .  by fa}y[Af ], obtaining

kYj [M ] R  = {q}Tj [M ] R  + ccj {qfj [M ]fa}y + fij {q}Tj [M ]{?},_, +.... (33)

By the definition o f Kronecker delta, Stj, all terms except {q}Tj \M ]{^}y = 1 

are equal to 0, so the equation can be reduced to

f a } /M  R  = « /  (34)

or CCj ={qYj[M] R (35)

Similarly, multiplying R  by it becomes

Pj = R - i M  R  (36)

14
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From equation (31) for j  and j-1,

f l - ,  =

Substituting jr}y into (35), it becomes

f i , -  t W W M H

= f L M M , -

From equation (32), considering step (j-l)th and then multiply the equation by 

{q}Tj [M ] and transpose the result, it becomes

P j  =  W y M  H - .  + P j - i W j W ]  { q } j - z  + —

By the definition o f Kronecker delta, all terms except 1st term on right hand 

side of the equation are zero. Therefore,

Pj = W / M H - ,  (36)

and, qf  is the vector from normalizing, r._,. Therefore,

(37)

where |{r}y_,|| = M r ) , ,  f

Substituting equation (37) into (36),

F U ^ R - ,

' = IR.,1
or Pj = (M  [M Y 1 (38)

15
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Note: the 3rd term of equation (33) will disappear due to the definition of Kronecker 

delta when applying procedure similarly to the first 2 terms.

As the Lanczos steps go on, ccj and /?y are found in every step j^1. Once all 

ctj and are found, forming a tridiagonal matrix is taken as the next step. From 

equation (31) and (32),

h ,  -  (39)

It is assumed that our system matrix size is m x m. For j < m, rearranging the 

series o f equation (39) in a global matrix, it can be shown as

[o:o;o:....... :o ;o ;r „ ]= |* k 'M  [e]„ - f e L M .

f c l  - f e L t d ,  m

wi*  {«}/ = {o,o,o,o,......0,1}

where

E L  =

ax /?,
Pi °h. A

k • •

• • •

• • •

• Pm

Pm <*m (41)

From orthogonality property, fe E  \.m  f e L  = E L  where [/L is a m x m unit 

matrix. Then, multiplying equation (17) by [qE  \M  ]>and obtain

o = f e E M * t lM < 2 L - E L

16
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M .  - f e E M * t f M e L  (42)

Now, applying Rayleigh-Ritz Approximation to obtain eigenvalues of 

the reduced tridiagonal matrix is possible, which are the reverses of eigenvalues o f  the 

original system. The Lanczos algorithm is inefficient when a complete matrix is to be 

tridiagonalized. Other techniques such as the householder method are significantly 

more efficient.

If  the objective is to calculate only a few eigenvalues and corresponding, 

eigenvectors o f  the problem \k \$ ( } = A[M ]{̂ f}, an iteration based on the Lanczos 

transformation is very efficient or the most efficient algorithm if integrated with the 

Rayleigh-Ritz approximation.

Simplifying Lanczos Algorithm via Proper Matrix Notation

The standard Lanczos algorithm transforms a symmetric matrix or 

eigenvalueroblem [/T]{x} = qj2[M]{r} into a symmetric tridiagonal form. The method 

being described changes the procedure so that a symmetric tridiagonal matrix is created. 

It is a modified version of the matrix notation in [1]. If

Y = [{y,}, {y2 {yn}] is set o f mass-orthogonal vectors, {y,-}. The transformation to 

tridiagonal form may be described by

A

M M - M M  p ' ^

B . ar 'a - l  n

Multiplying the equation from left by [y]r :

17
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M r M  M = M r M  M

A
A  A

A -.

and [y J[m ] [y ] is a unit matrix, so

[Yf[K]  [y ]-
' a  i A

A  A

A-I a,

The matrix [Y] can therefore be named a “Transformation matrix.” The 

Lanczos transformation may be written as p vector equations, which p is much smaller 

than n. N is the size o f matrices [K] and [M]. Picking an arbitrary starting vector {x} 

and calculating a  = ({x}r [M ]{*}) 2 ; {x,} = — {*}; for i = 1.. .p, the following equations 

are calculated. Starting with solve within the do-loop the linear system of 

equations:

= {/,-} ; {/,-} is loading case I 

Calculation o f coefficients y,

w )

Calculation o f the following equations within the do-loop if  i =£ p

} -  k } -  A-i k - t }

(44)

(45)

A H d}[M]  ^ } J

(46)

(47)

(48)

18
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Equation (44) indicates that the “Lanczos Transformation” requires only the 

solution of a linear system of equations with p loading cases. The generation o f the 

mass-orthonormalization of the vectors {xI+l} is less time consuming than the standard 

Gram-Schmidt procedure, since the applied vector {.r,- }in (44) is already mass- 

orthonormal compared to vector{/I} in (18). /?,. in (47) represents {/) }r {/-} in (18).

The other terms {ft }r } are zero due to orthogonality, a . in (b) represents 

\ f i F  }in 0  with { f .} = f  is not mass-orthogonal.

Ravleieh-Ritz Approximation 

From a generalized eigenvalue problem,

[K \,{y}=  X[Mjy \

I»1

and, 0 being the eigenvalue 

now, defining a residual vector,

(49>

Rayleigh-Ritz method requires this residual vector to be orthogonal to every 

starting vector, {x}m. Thus,

M S W - W I M M - *  W I M . M = o

. le t  M , =  M IM K M . end [m l  =  { M I K M .

The eigenproblem can be reduced above to

I k L . - s M L ]  ( M = o

19
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Consider a generalized eigenproblem,

W = [ W [ m ] - j [/]]w  (50)

Then, the residual vector can be calculated by (45),

R  =  l K  £  l M  M  -  e i  \ y \  ( 5 1 )

This residual vector is M-orthogonal to the set o f Lanczos vectors, therefore the 

eigenpair, {0i , [y}.}, is a Ritz pair. Now, recall that [Q ^ = \ x \ m 

when i = l,2 ,.., m.

{0}=tel Mfct1 [m] tel (4 - 8, IfiM}
{o}=[M.-e,[ef4 <52>
Comparing equation (47) to (45), eigenvalues and eigenvectors of the 

generalized eigenproblem can be calculated by

A t. =  —

W  = [ e l R

If the eigenvalues have been shifted, eigenvalues o f the original problem can be 

found by

=  —  +  a  
0,

20

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Convergence of Eigenvalues 

Accuracy of eigenvalue calculation increases as numbers o f Lanczos steps are 

performs. In this thesis, size o f Ritz residual vector is used as an indicator to tell 

whether the eigenvalue being calculated meets the required accuracy or not. The level 

of accuracy is set as a tolerance. Accuracy is higher when this number is smaller. The 

accuracy is met when residual vector norm is less than tolerance.

W = [ 4 ‘M W - ^ W

fe  isan eigenpair 

Post multiplying (40) with , obtaining

[*E [m IeL (4 - [el (4 = W. (4,
Taking norm,

||K  MeL (4 - IeL [rL W.|. - 1|{4. Wr- «<L

HK4.ii |{.r-w,|
= 1(4.1 k<l (55)

where gi is the last element of

md llWmlL “ Am ’S°

P  mi

and, eigenvalue meets required accuracy when 

p .  < tolerence/ m t

21
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CHAPTER 3

LOSS OF OTHOGONIZATION AND REORTHOGONIZATION

Introduction

Even though, central processing unit in computer nowadays can calculate with 

a very high precision, it is still not an exact calculation. The amount of error o f each 

calculation is called a unit roundoff error.

This error, when propagating along on going Lanczos algorithm steps, can 

cause a huge error to the orthogonality of Lanczos vectors during M-orthogonaliztion 

step. Eventually, the error will keep multiplying itself until Lanczos vectors lose 

orthogonality to each other. As a result, solution’s accuracy will never be met.

The ratio of residual vector and [At£‘ [M ] {q}j can represent sine angle 

between those 2 vectors. Theoretically, these 2 vectors are orthogonal to each other. 

Therefore, this ratio should be equal to 1.

However, in computation this ratio is not exact one. It is affected by the 

roundoff error. This ratio, which represents orthogonality, decreases when those 2 

vectors are less and less orthogonal. When it goes down close to 0, it indicates

II W M  H i l l

0 U _____
(53)

22
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that they are almost parallel. In other word, they lose orthogonality. Therefore, 

residue vector, {r}y-, should be orthogonalized again against {q]j. l and {q}j . This is 

called orthogonality repairing or “Reorthogonization.”

Loss-of-Orthogonalitv Indicator 

From theorem, Kronecker delta, Sg, is equal to 0 or 1, when i = j or i #  j 

respectively. However, this condition will be held in exact calculation only. In 

computations, this delta is affected by roundoff errors. By the fact that when 

Kronecker delta, i *  j, grow far away from 0 along steps o f iteration, the error already 

have grown too much, this number can be a great indicator of calculation precision or 

amount o f loss o f orthogonality.

Let b l  = [ {?},. {«}.. {« } ,. {?}.]

M L  = f c L M  fe L  

{«■}.=[ Mi. {*}=. M ,. {*}.]

where -

M ,r M  « ,  
fe},

where {y},, i = 1, 2,...., m, are Lanczos vectors o f step i.

, i = 1 ,2,...., m, are loss-of-orthogonality indicators 

From equation (32) and (34),

23
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P j + x Q j + x  =  lKV M My - f a } j a j  + My-î yl (54)

Elements in{//}m can be represented as

Mi} =  MfM My 
Pre-multiplying equation (49) by {g}f [M] and rearranging equation,

[ { s t fM  [ * t ' M  {,},

= Mf l M ] My+iP j + x  + My fe}y « /  + My [ M  I d j - x P j

=  Pj+xMi .  y i  +  a y ^ / . y  +  £ y  t t . y - i  (55)

Similarly,

[My [W]] [KV [w] Mf = PmM}.m + a.̂ y,/ + Âyy-I (56)
Because MK~lM  is symmetric, left side o f equations (SO) and (51) are equal. 

Therefore,

Pj+iMj+u = Pm Mj.m  + («, ~ aj )Mj j  + P i M j j - i  ~PjMj-u  (57)

At the 1st step, it is assumed that the value of elements in / / mhas a value o f 1 

and the unit roundoff error, s, when i = j and i ^  j  respectively.

Rearranging equation (52), it becomes

P j*\Mj*u = (Pm Mj.m  + ctiMjj + PiM/j-1) + PiMj.i-1 ~ ajMjj  (58)

From (34), the series o f the parenthesis, when i > 2, can be written as 

[T]y_, {h]j. So, equation (53) after rearranging is

24
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P j + x  M j + u  = lT L-. ih }y + P i M j j . t -  GCjfijj (59)

Because after each Lanczos step, , j3._xand czj are found, it is easy to 

calculate loss of orthogonality indicator matrix, {/z}jVI.

Semi-Orthogonalitv

As mentioned before, restoring orthogonality or reorthogonization should be 

conducted when any element in the indicator matrix grows bigger than the projected 

error limit.

|M,r M  M ,| > * ;>* j  («o)

For faster calculation, applying semi-orthogonality criteria instead of foil 

orthogonality is preferred.

fe}{ > V J ; i # j  (61)

Even though precision o f semi-orthogonality is not as good as the foil one, the

solution is still acceptable in any kind of calculation. We do so by using higher 

limitation of error.

25
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CHAPTER 4 

INPUT AND OUTPUT AND STRUCTURE OF 

LANCZOS ALGORITHM PROGRAM

Input and Output of the Program Package 

Lanczos algorithm package in this thesis is a modified version of the listing in 

the textbook of Dr. Thomas J.R. Hughes, “The Finite Element Method,” Prentice-Hall, 

1987.

Input of the Program

In order to perform Lanczos Algorithm and solve eigenproblem by this 

program, data below are required.

1. LANMAX the maximum number o f  Lanczos steps allowed to perform

2. MAXPRS the maximum number o f eigenpairs user allowed to be 

calculated.

3. N the dimension of system size

4. K the stiffness matrix

5. M the mass matrix

When the program package is initiated, it will prompt to receive the data of N, 

LANMAX and MAXPRS at the main program “Lanczos.” Then, received data will 

be passed into subroutine LANCZOSCON.

26
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This subroutine will prompt again to receive the data of [K] and [M] matrices. 

User will input all mass and stiffness matrices right after this point.

Providing a starting vector for Lanczos step is optional and can be input at this 

subroutine. If starting vector is not received, the subroutine will randomly allocate it. 

After all, Lanczos loop with reorthogonization is performed. And, the results are 

printed.

Output o f the Program

Outputs of the program are eigenvalues and eigenvectors of the user-provided 

mechanical system. Number o f eigenpairs normally is equal to MAXPRS. However, 

the number o f eigenpairs can be less because the outputs are only eigenvalues that are 

proved to be converged by the program before the maximum steps of Lanczos loop 

has been reached, LANMAX. When almost converged Ritz values meet convergent 

tolerance, those Ritz values will be listed in the converged eigenvalue matrix.

Nevertheless, at the end o f the last step o f Lanczos algorithm, LANMAXth,

The most updated Ritz values will be listed in the eigenvalue array if the number of 

converged eigenvalues has not reached the number o f the user-wanted eigenpairs, 

LANMAX. At the end o f program, eigenvectors corresponding to the computed 

eigenvalues will be calculated and shown in the output page. See appendix D for 

example.

Structure o f  the Lanczos Algorithm Program 

In his thesis, Lanczos Algorithm programming package was modified from Dr. 

Thomas’s work, [3] on 557-560. This Lanczos algorithm-programming package is

27
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constructed on Fortran 90 compiler. Microsoft FORTRAN Developer Studio was 

used. The package consists o f 1 main program, 5 functions and 24 subroutines.

Lanczos is the main program and called first to initiate all the computation. 

Function of each FORTRAN function and subroutines will be elaborated later in this 

chapter. The list of main program, subroutines and functions that are used in the 

package are listed below.

Main program

LANCZOS

Subroutines

LANCZOSCON LANDRV LANSEL
LANSIM PURGE ANALZT
STPONE RITVEC K-ENPUT
OPK OPM GIVENS
NEWCOR ORTBND QLBOT
SUBJ DEFLAT MOVE1
STORE RAN CSCAL
DAXPY DCOPY ZERO

Functions

ENOUGH NUMLES GETEPS
DDOT IDAMAX

On the next page, the Lanczos algorithm is shown. Some subroutines and 

functions will be called more than once depending on nature of system. The flowchart 

of the structure o f every coding in package and package’s structure itself can be seen 

in appendix A. The codes o f each coding elements in Lanczos algorithm package can 

be seen in appendix B. The meaning of variables used can be seen in appendix C.

28
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Lanczos Algorithm 

Set Initial variable and vectors; {r}0 is the given eigenvector

1- fa}o = 0

2. A = ( w ? M w . r

« - f

4. {/>}, = |>f] fa},

Forj = 1, 2, 3,.... 

i.

3. < *,= W j[u ] = {p\T,\r] ,

4. H ,  = r l - W / a ;

5. {p}j =[M]{r}j

6. Pj*  =({r}/[^K ''}y)/2 = (

7. If MAXPRS has been reached, terminate Lanzcos loop

8- fa}y+i = ~ r ~ ri
Pj+1

9- { p } j* = -J - \p ) j
P j* \

FIGURE 1. Lanczos Algorithm 
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Main Program

Program LANCZOS. The variables that have not been set their values cannot 

be used to set dimensions of arrays in the same program or subroutine. Therefore, 

separating main program into 2 parts is needed. First part will receive parameters of 

the system’s size, N, maximum eigenpairs needed by user, MAXPRS, and maximum 

allowed steps o f Lanczos algorithm to perform, LANMAX. Then, LANCZOS passes 

down these parameters to its continuing subroutine, LANCZOSCON, which will 

allocate the parameter to appropriate arrays.

N is dimension o f system matrix.

LANMAX is number o f maximum Lanczos steps that program will compute. 

The Lanczos steps will be stopped if number of step is over this value.

MAXPRS is number o f maximum eigenpairs needed by user. The Lanczos 

steps will be stopped when this number is reached.

Subroutines

Subroutine LANCZOSCON. This subroutine is continuation of the main 

program, LANCZOS. It allocates dimensions o f W, Y EIG and IW array with suitable 

LANMAX, MAXPRS and N. After this step, it prompts to receive the data of ENDL 

and ENDR; call LANDRV to compute eigenvalues and their corresponding 

eigenvectors; and finally prints the computed eigenpairs.

Subroutine LANDRV. This subroutine is to initialize Lanczos algorithm. It

first checks error of received data earlier. These errors are caused by inputting wrong

value by nature or impossible case o f those values. For example, ENDL is the left end
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of eigenvalues’ range. It cannot be more than ENDR, which is right end o f the range. 

The list of errors concerned is shown at the end of this subroutine’s description.

If any of these errors occur, the computation will be terminated and IERR, 

error indicator, will be assigned a value. Each value o f IERR has its meaning. 

Different value means different kind of errors. The meaning of IERR is described in 

the table below as well. This way, small errors that might confuse us when there are 

calculation errors or miscalculated results is prevented to occur. After all data are 

checked, subroutine will determine computer precision, unit roundoff error and semi

orthogonality tolerance, by calling GETEP. Then, those values will be put into EPS, 

EPS1 and REPS.

In Finite Element Method (FEM), Lanczos Algorithm program deals with a 

very large eigensystem. Million-by-million matrix size is not unusual at all. 

Therefore, avoiding excessive data transferring between subroutines and within 

subroutines themselves due to the enormous data being computed is concerned. 

Therefore, next step of this subroutine is to prepare 1 big matrix that contains all 

vectors and arrays. The subroutine sets pointers o f working vectors and arrays in the 

main array, W. These pointers indicate the positions of first element of each vectors 

and arrays. By this strategy, instead o f moving all the data in computing vector or 

array, the program work in the same data spaces lead to by the pointers.

The next step in LANDRV is checking the starting vector. It will check 

weather the starting vector is provided by user or not. If  it has already been provided, 

the step will be skipped. Otherwise, LANDRV will randomly assign starting vector
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using RAN subroutine. Up to this point, all the data have been already input and the 

program is ready to perform Lanczos Algorithm.

The 1st step of Lanczos Algorithm is performed by STPONE. This subroutine 

calculates first step and prepares Lanczos vector qi, a t and 02- The rest o f the 

Lanczos Algorithm will be performed by LANSEL. Once all the requirements are met 

of program terminated for some reason, LANDRV will return to subroutine 

LANCZOSCON.

Input N, LANMAX, MAXPRS, ENDL, ENDR, NW, W and IW 

Output EIG, Y, IERR and NEIG

TABLE 1. The Definition of the 
Value of the Error Flag

Bit value Represent
1 N < 0
2 LANMAX < 0
3 ENDR < ENDL
4 MAXPRS < 0
5 MAXPRS > LANMAX
6 LANMAX > N
7 NW is too small
-1 J > LANMAX

Note: IERR will be set to negative 1 if  maximum Lanczos steps have been 

reached without any converged eigenvalue.

Subroutine LANSEL. This subroutine performs the rest o f Lanczos Algorithm 

and applies reorthogonization when error bounds grow higher than set tolerance.
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Subroutine PURGE skips itself internally when j is less than 3, first and second 

step. Subroutine ANALZT does so as well. Here is the structure o f the subroutine 

LANSEL.

First of all, subroutine LANSEL calls subroutine LANSIM to take a step of 

Lanczos algorithm. As a result, the new a, |3 and Lanczos vector are identified. After 

new elements of tridiagonal matrix have been found, ORTBND is called to update the 

orthogonality errors. This error indicator vector is next to be checked by subroutine 

PURGE. If any element o f this indicator vector is out o f limitation error bound, it 

shows that the algorithm process is losing orthogonality between working vectors. 

Inputs: N, LANMAX, MAXPRS, NS, ENDL and ENDR

Outputs: EIG, Y, NEIG and IERR 

Internal working variables:

R, NQ, ALF, BET, ALPG, BET2, TAU, OLDTAU, RHO, ETA, 

OLDETA, INFO, S and WORK.

Subroutine LANSIM. This subroutine performs a new Lanczos step. All 

vectors and arrays are working inside the global array, R. The structure o f this 

subroutine is exactly the same as the structure of Lanczos Algorithm. It will calculate 

new element of ALF and BET and update running Lanczos vectors. It is called by 

subroutine LANSEL.

Subroutine LANSIM actually updates already existing the working arrays (set 

of elements in global array, R) in this subroutine, hi other words, the inputs also act as 

outputs.
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Input: NQ, N, J.

Input/Output:

R, ALF, BET, ALPH, BET2, RNM, RNM2 

Subroutine PURGE. The main purpose of this subroutine is to monitor loss o f 

orthogonality of the computation. If any occurs, the subroutine will perform 

appropriate reorthogonization. It will examine the array ETA, which contains 

orthogonality bounds, hJ+]. If the largest value of array ETA is less than the semi

orthogonality tolerance,Vff or REPS, there is no unacceptable loss of semi

orthogonality and the subroutine is skipped.

Oppositely, if the loss of orthogonality is detected, array TAU, which holds t  

recurrence, will be checked. If  i1*1 element of array TAU is greater than REPS, it 

indicates that loss o f semi-orthogonality against Ritz vector with index i has occurred. 

Then, the corresponding eigenvector of tridiagonal matrix, [r]y, is computed by

subroutine GIVEN. And subroutine PURGE orthogonizes array ETA and OLDETA 

against this eigenvector.

Next step, subroutine PURGE rechecks the updated array ETA. If there is still 

loss of semi-orthogonality detected, it will perform full orthogonization. Subroutine 

RITVEC is called to perfonn full orthogonization, and the value o f elements of array 

TAU, OLDTAU, ETA and OLDETA will be reset to EPS 1, 4ne . However, if  array 

ETA does not indicate loss o f semi-orthogonality in the second check, only loss of 

semi-orthogonality against Ritz vector will be taken care of. Subroutine PURGE 

orthogonizes {q}j and {r}y in array Q and R against Ritz vectors in column of Y with
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index i. The elements o f array TAU and OLDTAU will be reset to EPS1. At the end, 

[Acf ]{<y }y and \M ]fa}r in QA and RA are recalculated if there is any change in {r }y and

fa}/
Input/Output:

Almost all the working arrays are both input and output in this subroutine 

R, Q, RA, QA, T, Y, ALF, BET, S, EIG, ETA, ELDETA, TAU, OLDTAU, WORK, 

INFO, N, J, NEIG and IBUF.

Subroutine ANALZT, This subroutine provides the smallest interval that 

contains eigenvalues o f tridiagonal matrix, \T}y Subroutine only computes 

eigenvalues o f  2 x 2 matrix containing a x and a 2 and 2 of /?, in 2nd step of Lanczos 

loop, j = 2. The simple equation to solve eigenvalues o f 2 x 2 matrix below is used at 

this point.

^  a x + a 2 ± 4 * 0 2(2) + ( a x - a , ) 2 
2

From the 3rd step on, the subroutine will perform 2 phases. Firstly, it updates 

the data structure, THET and BJ, which contain eigenvalues o f [ r ]j_x and their 

residual bounds, respectively. Secondly, it checks convergence of almost converged 

eigenvalues stored in THET. If any o f them has been converged, it will be removed 

from THET and put into array EIG. hi this phase, new element o f THET and 

corresponding BJ will be appended. This subroutine is 1 of the main steps of 

LANSEL loop.

Input: J, ALF, BET2, EIG, TAU, OLDTAU, RHO, INFO, THET
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Output: EIG 

Internal variable:

NDST, THET, BJ, NBD, SPREAD, EPS, IP, INC, IS, START, 

PROBE and INDXOK

Subroutine STPONE. This subroutine performs the 1st step o f  Lanczos 

iteration. It computes cti. Pi, qi and pi. From this subroutine on, the global array, W, 

will be referred as global array, R.

First 6 blocks o f  elements or R store 6 working vectors. The positions of 

starting element of each vector are indicated pointers, NQ. Below is the table of 

structure of first 6 blocks of array R.

The structure o f STPONE can be referred from figure 1 when j  = 1.

TABLE. 2 Pointers of Elements 
in Global Array

Pointer 1 NQ1 NQ2 NQ3 NQ4 NQ5
Vector r i Qi Qm Mr, Mqi T

Input/Output:

This subroutine mostly updates new value of ai and pi, so most of 

working arrays are both input and output.

N, ALF, BET, ALPH, BET2, R  and NQ

Subroutine RITVEC. This subroutine has 2 main functions. First, it is 

computing the Ritz vector corresponding to a converged Ritz value or eigenvalue. 

Second, it is performing a full reorthogonalization.
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Computing the Ritz vector is performed every time this subroutine is called. 

Full reorthogonization is preformed when there is loss of semi-orthogonality against 

previous Lanczos vector, indicating by logical value EVONLY, which is computed by 

subroutine PURGE. If logical EVONLY is true, only eigenvector is computed. 

Otherwise, both functions are performed.

In order to compute the Ritz vector, subroutine RITVEC calls subroutine 

GIVENS to perform the computation for the wanted eigenvector. Once the vector is 

obtained, subroutine STORE is called to obtain Lanczos vectors from the secondary 

storage. Now, the Ritz vector can be calculated by

{r}(m)= fe U 5}f'") , i=  1,..., m

When logical EVONLY is false, it indicates that the full reorthogonalization is 

needed. The 2 current Lanczos vectors, {<y}yand (r}; , in Q and R will be orthogonized

against the previous Lanczos vectors, which have been just called by subroutine 

STORE.

Input/ Output:

Almost all the working arrays are both input and output in this 

subroutine.

R, Q, RA, QA, T, Y, ALF, BET, EIG, ETA, S, INFO, N, J, NEIGIBUF and 

EVONLY.

Subroutine K-EINPUT. This subroutine acquires the values o f the elements in 

the system mass and stiffness matrices. It receives data in 2 ways. First, it can receive
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data one by one from typing. Second, it can receive data from data files that have 

already been setup before.

Subroutine OPK. This subroutine solves an equation below. This subroutine 

is used mainly in subroutine STPONE and LANSIM to perform the M- 

orthogonization.

fr}-

{X} and {Y} are vectors

M  a is the shifted system stiffness matrix

Subroutine PPM. This subroutine solves an equation below. This subroutine 

is also used mainly in subroutine STPONE and LANSIM to perform the M- 

Orthogonization. It is called at almost the same step as OPK.

{Y}=[M]{X}

{Y} and {X} are vectors

M is the system mass matrix

Subroutine GIVENS. This subroutine is called by RITVEC to compute 

eigenvector o f tridiagonal matrix, T, corresponding to an eigenvalue in THET. 

Because this is a tridiagonal matrix, computation o f  eigenvector first starts by 

assuming a value of the bottom element o f the vector. The rest of the elements can be 

computed by a series of simple equation going backward. For example,

Ul o o
1

v i ' o '

5 2  6  0 v . 0

0 6 3 7 V3
►

0

0 0 7 4 . V 0
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Considering, 4th column,

7 x v 3 +  4 v 4 =  0  

- 4

Then, considering 3rd column,

6 * v2 + 3 * v3 + 7 v 4 = 0

6*v,  — — + 7 v 4 = 0  
‘ 7

by assuming that v4 = 1, it becomes

37

This phase is terminated when kth element of S is found. Then, the computed 

elements are scaled to make S(k) equal to 1. After that, the same series of calculation 

are performed, but starting from the 1st element o f the vector and going foreword until 

reaching the kth element.

After all, eigenvector S, is normalized and the residual and Rayleigh correction 

to THETA are computed and put in RES and COR respectively.

Input: K, J, ALF, BET, THET and EPS

Output: S, RES and COR

Subroutine NEWCOR. This subroutine’s function is to find an eigenvalues of 

a matrix in a given interval. Two theories are used in this subroutine, Bisection and 

Newton’s method. The Elements o f THET with index of INDEX contains the 

eigenvalues o f [r]y_,. This value is also 1 end of interval. The other end is held by 

ZETA. ZETA is also the starting value of Newton’s method applied the next.

39
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If the interval is considerably broard, subroutine NEWCOR will perform a few 

steps of Bisection to decrease the interval. The counts o f eigenvalues in the interval is 

computed by subroutine NUMLES. Detail o f Bisection and Newton’s method can be 

found in [4] on pages 81-83 and 109-113, respectively.

Once the better approximation of ZETA has been obtained, Newton’s method 

will be performed to refine it for the best approximated ZETA. The convergence of 

Newton’s method is then checked by deflation the eigenvalues exterior to ZETA 

implicitly.

Input: ALF, BET2, SPREAD, INC, INDX, J and NDST

Input/Output:

ZETA, THET and BJ

Subroutine ORTBND. This subroutine updates the error indication vector of 

the on going computation, the orthogonality bounds, {/j}yand {r} recurrence.

These 2 kinds o f indicator vectors have not been mentioned before. In an easy 

explanation, the program monitors loss of orthogonality at 2 places, loss of 

orthogonality against previous Lanczos vector and current Ritz vector. The 

orthogonality bounds are used to monitor loss o f orthogonality against previous 

Lanczos vector.

The reorthogonization against previous Lanczos vector is the full version o f 

reorthogonization. On the other hand, reorthogonization against Ritz value is a shorter 

process and deals with fewer amounts o f data. Therefore, avoiding full

40
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reorthogonization all the time and conducting orthogonization against Ritz vector is 

the way to optimize the computation rate and cost.

Subroutine LANSEL is the only one to call subroutine ORTBND. And, the 

output of subroutine ORTBND will be used by subroutine PURGE. These outputs 

will be compared to the semi-orthogonality tolerance to indicate whether there has 

been loss of orthogonality or not.

Input: ALF, BET, J, EPS 1, ETA, OLDETA, TAU, OLDTAU, EIG, INFO,

RNM, NEIG and N.

Output: ETA, OLDETA, TAU and OLDTAU.

Subroutine OLBOT. This subroutine computes the last element of the 

eigenvector of the tridiagonal matrix, [r]y, that is corresponding to the eigenvalue 

stored in THET. It performs QL factorization. The product of sines o f  the rotation 

angles is the value of the bottom element. The value of the bottom element is returned 

as BOT.

Input: ALF, BET2, THET, J

Output: BOT

Subroutine SUBTJ. In some cases, 2 or more eigenvalues o f a tridiagonal 

matrix can be so close that the computer cannot distinguish the difference. This 

creates a difficulty to compute eigenvectors.

This subroutine solves the problem by working with a sub-matrix [r], instead 

o f the global, \T  It calculates an estimate o f indices I and m that defines a sub-

41
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matrix for which EIG(I) is simple. INFO(I) = N x k + j stores the 2 indices, j  and k. 

The value of j is the step where EIG(I) was computed. The value o f k is the index of

the biggest element o f the eigenvector. If INFO© is less than 0, Ritz vector in Y(I) 

has been converged.

Input: EIG, INFO, TOL, I, N and NEIG

Output: K the index of the right hand side o f subroutine GIVENS 

L the index of the last element of the sub-matrix 

M the index of the first element o f the sub-matrix 

Subroutine DEFLAT. This subroutine perform deflation o f tridiagonal matrix, 

[r]y > with a converged eigenvalue in THET. The QR algorithm is used to perform 

the process. Detail o f deflation can be seen in [4] on pages 47-50 and [7] pages 421- 

424.

Input: ALF, BET2, THET, J

Output: ALF, BET2

Subroutine MOVE1. This subroutine is an important management tool used 

by subroutine ANALZT. It inserts a given value, T, into the kth element o f array Y. 

The elements already existing will be moved by 1 space upward or downward 

depending on the sign o f MINC.

Input: {Y}, K, L, MINC, T

Output: {Y}

Subroutine RAN. This subroutine is called by subroutine LANDRV to 

randomly select an element o f starting vector for the Lanczos loop.

42
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Subroutine CSCAL. This subroutine performs scalar multiplication to a given 

matrix, {Y}.

{Y}=a{Y}

Subroutine DAXPY. This subroutine computes the product o f a scalar, a, and 

a given vector, {X}. Then, adding the result to another vector, {Y}. The outcome is 

returned as the vector {Y}.

{Y}=a{X} + {Y}

Subroutine DCQPY. This subroutine copies the value o f vector, {X}, to 

another vector, {Y}.

{Y} -  {X}

Subroutine ZERO. This subroutine simply reset every element in a vector, 

{Y}, to 0.

{Y} = 0

Subroutine STORE. This subroutine acts as storage. It has 2 functions 

commanded by the value o f ISW. When ISW is equal to 1, the subroutine stores the 

given vector in secondary storage possessing the index of Lanczos step, j. When the 

ISW is equal to 2, the vector with the given index will be pulled out from the 2nd 

storage. These vectors are Lanczos vectors o f each Lanczos step, which is indicated 

by the index.

Input: ISW, V, N, J

Output: V

43
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Functions

Logical function ENOUGH. This Logical function gives logical output 

indication whether all the user-required eigenvalues have been converged and 

collected or not. If so, the logical value will be true. The output from this logical 

function is used by subroutine LANSEL to terminate Lanczos loop when enough 

eigenvalues have been found.

Another purpose o f this logical function is to determine whether an eigenvalue 

has been found outside the interval [ENDL, ENDR] that is limited by the user or not. 

If so, subroutine ENOUGH will give output to terminate the Lanczos loop as well.

Input: ENDL, ENDR and MAXPRS

Output: ENOGUH

Function NUMLES. This subroutine counts the eigenvalues exist below or 

above a given value, ZETA. It performs LDLT factorization o f the tridiagonal 

matrix, [r]y. For more information, see [4] on pages 123-127. Only D is computed 

because the program does not use L. The number o f eigenvalues above or below 

ZETA is returned as NUMLES.

Input: ALF, BET2, ZETA, N, INC, EPS

Output: NUMLES

Function GETEPS. This subroutine determines the precision of the computer 

being used to run the program. It will evaluate roundoff error o f the computer. This 

value is so important in evaluation o f  loss of orthogonality o f  the computation. The
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roundoff error is computed based on the criterion that roundoff error, e, is the smallest 

value such that 1+s >1.

Input: None

Output: EPS

Function DDOT. This function computes the Euclidean inner product o f 2 

vectors, {X} and {Y}. The result is returned as DOT

DOT = {*}r {r}

Function IDAMAX. This unction finds the index o f the element with the 

greatest absolute value in a given vector, {Y}.

i = arg (maxwJ{y},|)

Input: {Y} the given vector

Output: i the index of the greatest element in absolute value

45
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CHAPTER 5 

CONCLUSION

Lanczos algorithm was first developed for tridiagonalization. The algorithm is 

consisting o f  2 important numerical procedures, Gram-Schmidt Orthogonalization and 

Rayleigh-Ritz Approximation.

Gram-Schmidt Orthogonalization is used for calculation of a Krylov sequence, 

which is a sequence that leads to the resultant eigenvector. Rayleigh-Ritz 

Approximation is used for constructing the tridiagonalized matrix. The purpose of 

Lanczos Algorithm is to calculate the 1st few eigenpairs of a huge eigenproblem in 

Finite Element Method (FEM).

Professor Ohtmer, my research advisor and I, strongly believe that it soon 

becomes a very popular and effective procedure for solving huge eigenproblems. The 

iteration has 2 outstanding advantages. One is its minimal calculation requirement. 

Because the smallest eigenvalue is converging a few iterations, not time and cost 

consuming. The other advantage is its simple iteration procedure. The iteration is not 

complicated to handle by engineers.

The Lanczos Algorithm applications are involved mainly in 3 different fields 

in Mechanical Engineering; Buckling Analysis, Natural Frequency Analysis and 

Thermal Frequency Analysis. The algorithm is well suited for the named applications
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because those analysis types require only first few smallest eigenvalues, which is 

exactly what the Lanczos algorithm provides.

In this Thesis, many Mathematical and Matrix theories have been used 

besides those 2 important ones. For example, the algorithm requires the use of 

Orthogonality-measurement between vectors in Krylov sequence, 

Reorthogonalization, Newton’s method, QR factorization, Bisection and Deflation.

The program package was 1st developed by Dr. Thomas J.R. Huges and 

written in his text book, “The Finite Element Method,” Printice-Hall, 1987. And, 

it is modified to be able to apply the algorithm almost automatically. This program 

package is modified and based on Microsoft Fortran 90 platform.

Input and Output of the program are Mass and Stiffness matrices, system’s 

size and maximum limit of Lanczos iteration and eigenvalue wanted. An initial 

vector of iteration can be provided by user as an option. Otherwise, the package 

will generate it. During the iteration, error of the computation is inspected. If an 

excessive error is detected, subroutines are called to perform a reorthogonization of 

the running vectors. This way, the accuracy of the calculation is preserved.

In the computation, positive-definite Mass and Stiffness matrices are 

required by Lanczos Algorithm to produce real eigenvalues. Fortunately, when 

delivered from Finite Element Method, these matrices are already positive-definite.

To test the program package, a large system was computed. The time 

consuming and accuracy were greatly acceptable.
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APPENDICES
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APPENDIX A

STRUCTURE FLOWCHART OF LANCZOS PACKAGE’S MAIN PROGRAM,

SUBROUTINE AND FUNCTIONS

49
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Lanczos package’s structure

Start

Take a Lanczos step

Compute computer precision

Acquire N, LANMAX and MAXPRS

Acquire M and K matrices by calling K-E input

Allocate spaces for working vectors and arrays

Check a starting vector/randomly selected when not provided

5 0
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No
Yes

End

Print result (eigenpairs)

Update orthogonality bounds

Compute corresponding eigenvectors

Perform reorthogonalization when needed

Check required eigenvalues have been found

Calculate new eigenvalues and their error bounds
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Main Program LANCZOS

End

Start

Call LANCZOSCON

Acquire N, LANMAX and MAXPRS

Calculate suitable size of global working array, NW
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Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Subroutine LANCZOSCON

End

Start

Print computed eigenpairs

Acquire ENDL and ENDR

Allocate dimensions of working arrays and vectors

Call Subroutine LANDRY to compute eigenpairs
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Subroutine LANDRY

Start

Check input data

Compute computer

Return to LANCZOSCON

Call LANSEL to perform the rest of Lanczos

Prepare vectors ready to perform first step of iteration

Check for starting vector/randomly select if not provided

Set pointers for working vectors and arrays in global matrix

Call subroutine STPONE to perform the first step of iteration
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Subroutine LANSEL

No
v  Yes

Start

Return to LANDRY

Perform a Lanczos step

Update orthogonality bounds

Compute corresponding eigenvectors

Perform reorthogonization if needed

Check if enough eigenvalues have been found

Update of better Ritz values and their 
error bounds with new computed a  and p
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Logical function ENOUGH

Start

_____________________t _____________________

Check if MAXPRS has been reached

Check if new eigenvalues is
outside the interval [NDL, ENDR]

No I r______________

Set output ENOUGH = FALSE

*

Set output ENOUGH = TRUE

Return
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Subroutine LANSIM

NoLocal reorth. Return

Yes

Store q .

vrn-iiPi
Solve K a r{ = p;. for r f  

r, = rf - qi_ ^
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Subroutine ORTBND

Start

Return

Update x recurrence

Update the orthogonality bounds, 
ETA and OLDETA
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Subroutine PURGE

Yes

No

YesReturn of 
banfshed Ritz vectors

No

Update h -

Orthog. r against 
the appropriate 
Ritz vectors and 

modify h j and f>;„

Orthog. r against 
previous Lanczos 
vectors and reset 

h j and h j  +., to y / n e

C  Return )
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Subroutine RTTVEC

No

Yes

True

False

Start

Return

Compute the Ritz Vector

Check logical EVONLY value

Allocate buffer and tolerance

Perform fu.ll reorthogonization

Check if EIG(I) is a true eigenvalues of T

Compute eigenvector of tridiagonal matrix 
corresponding to an eigenvalue
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Subroutine GIVENS

Start

Return

Calculate COR and RES

Perform foreword recurrence

Normalize computed vector

Scale the computed elements

Perform backward recurrence

Assume the last element of pursing vector to be one

Stop backward recurrence one kth element is reached
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Subroutine SUBTJ

Yes

No

Start

Return

Find the value of M

Check for close eigenvalues

Find the value of L

Check special case of EIG(I) 
if elements are equal to all alternate ALF’s
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Subroutine ANALZT

j = 2 J>3

Start

Return

Phase 1

Phase 2

Calculate eigenvalues

63

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Subroutine NEWCOR

Start

Return

Check convergence

Perform deflation

Perform Newton’s method to refine 
for a better approximation

Perform few steps of Bisection to obtain 
a smaller interval of eigenvalue
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Subroutine DEFLAT

Start

Return

Perform deflation

Subroutine QLBOT

Start

Return

Perform OT. algorithm
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Subroutine NEW COR

Start

Return

Count eigenvalues

Subroutine MOVE1

Start

Return

Insert T into k* element

Move exist elements
up or down
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APPENDIX B 

FORTRAN CODE USING IN 

LANCZOS ALGORITHM PACKAGE
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MAIN PROGRAM

PROGRAM LANZCOS

COMMON /LANMAX/LANMAX 
COMMON /NW/NW 
COMMON /N/N
COMMON /MAXPRS/MAXPRS

PRINT VINPUT A DIAMENSION OF METRIX'

N=5

IREAD (*,*) N

PRINT *,'INPUT THE UPPER LIMIT OF NUMBER OF LANZCOS STEPS'

LANMAX = 5 

'.READ (V )  LANMAX

PRINT VINPUT THE UPPER LIMIT TO THE NUMBER OF WANTED EIGENP AIRS’

MAXPRS = 5

IREAD (*,*) MAXPRS

NW = 6*N + 2*MAXPRS + 10‘ LANMAX

PRINT *,THE LENGTH OF THE W ARRAY IS',NW 
PRINT

CALL LANZCOSCON 

END PROGRAM
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SUBROUTINES

SUBROUTINE LANZCOSCON

REAL ENDL,ENDR 
INTEGER IERR, NEIG
REAL W(NW), Y(N,MAXPRS), EIG(MAXPRS),IW(LANMAX)
COMMON /LANMAX/LANMAX
COMMON /NW/NW
COMMON /N/N
COMMON /MAXPRS/MAXPRS
COMMON /STOREFIRST/ STOREFIRST
LOGICAL STOREFIRST
COMMON /IDATA/ A 3 ,NEIG

DO 40 1=1, MAXPRS

EIG(I) = 0

40 CONTINUE

STOREFIRST = .TRUE.

PRINT VINPUT THE LEFT END OF THE INTERVAL OF EIGENVALUES’
READ (*,*) ENDL

PRINT *,'INPUT THE RIGHT END OF THE INTERVAL OF EIGENVALUES'
READ (*,*) ENDR

CALL INPUTKEM(N)

CALL LANDRV (N, LANMAX, MAXPRS, ENDL, ENDR, NW, W, IW, EIG, Y, IERR)

DO 10 1=1,NEIG
DO 20 J= 1,N 

PRINT *, Y(J,I)
20 CONTINUE 
PRINT V  

10 CONTINUE

DO 301 = NEIG, 1,-1

EIG(I) = I/EIG(I)
PRINT *, EIG(I)

30 CONTINUE 
END
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SUBROUTINE LANDRV (N, LANMAX, MAXPRS, ENDL,ENDR, NW, W, IW, EIG, Y, IERR)

! INPUTS

!N DIMENSION OF THE EIGENPROBLEM
[LANMAX UPPER LIMIT TO THE NUMBER OF LANCZOS STEPS
[MAXPRS UPPER LIMIT TO THE NUMBER OF WANTED EIGENPAIRS
!ENDL LEFT END OF THE INTERVAL CONTAINING THE WANTED EIGENVALUES
!ENDR RIGHT END OF THE INTERVAL CONTAINING THE WANTED EIGENVALUES
!NW LENGTH OF THE WORK ARRAY W
!W WORK ARRAY OF LENGTH NW
!IW WORK ARRAY OF LENGTH MAXPRS

! OUTPUTS

! EIG ARRAY OF LENGTH MAXPRS TO HOLD THE CONVERGED RITZ VALUES
t Y ARRAY OF LENGTH MAXPRS*N TO HOLD THE CONVERGED RITZ VECTORS
! IERR ERROR FLAG
! NEIG TOTAL NUMBER OF CONVERGED EIGENPAIRS

! SUBROUTINES : DDOT, GETEPS, LANSEL, OPM, RAN, STPONE

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
REAL NQ(5), Y(N,MAXPRS), EIG(MAXPRS), W(NW), IW(MAXPRS), K 
INTEGER*2 IRANDOMI, IRANDOM2 
INTEGER NW, STARTINGVEC 
REAL ENDL, ENDR

! COMMON IDATA

!ETGL INNER MOST EIGENVALUE CONVERGED FROM LEFT END OF TRANSFORMED SPECTRUM 
!EIGR INNER MOST EIGENVALUE CONVERGED FROM RIGHT END OF TRANSFORMED 
SPECTRUM
!NEIG I TOTAL NUMBER OF CONVEGED EIGENVALUES 

! COMMON RDATA

!RNM NORM OF THE RESIDUAL VECTOR IN R (NQ (1))
[RNM2 SQUARE OF RNM
[SPREAD WIDTH OF THE INTERVAL CONTAINING THE UNCONVERGED EIGENVALUES 
ITOL TOLERANCE FOR CONVERGENCE OF THE EIGENVALUES
[EPS COMPUTER PRECISION
[EPS I EPS*SQRT(N)
[REPS SQUARE ROOT OF EPS

COMMON /IDATA/EIGL, EIGR, NEIG 
COMMON /RDATA/ RNM, RNM2, SPREAD, TOL 
COMMON /PREaSIO N / EPS, EPS1, REPS
COMMON /LANCON/ ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, 

ONE28, TW 056, FIVE12, ORTFAC, OVRFLW
DATA ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28, TW056, 

FIVE12, ORTFAC, OVRFLW/ O.ODO, O.IDO, 0.I25D0,0.25D0,0.5D0, IDO, 2.0D0,4.0D0,I0.OD0,128.0DO, 
256.0DO, 5 12.0 DO, 4.0D0,1.7014EH-38 /

CHECK INPUT DATA
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IERR = 0
MT= 6*N + 2*MAXPRS + 10*LANMAX 
IF ( N .LE. 0 ) IERR = IERR + I
IF ( LANMAX .LE. 0 ) IERR = IERR -r 2
IF ( ENDR .LE. ENDL ) IERR = IERR + 4

IF ( MAXPRS .LE. 0 )
IF ( MAXPRS .GT. LANMAX )
IF ( LANMAX .GT. N )
IF ( MT .GT. NW )
IF ( IERR .GT. 0 ) RETURN

K = GETEPS(IBETA. IT, IRND)
EPS=K
REPS = SQRT (EPS)
EPS1 = EPS’ SQRT (FLOAT (N))

! SET POINTERS AND INITIALIZE

M l = I + 6*N
M2 = MAXPRS + Ml 
M3 = MAXPRS + M2 
M4 = LANMAX + M3 
M5 = LANMAX + M4 
M6 = LANMAX + M5 
M7 = LANMAX + M6 
M8 = LANMAX + M7 
M9 = LANMAX + M8 
MIO = LANMAX + M9 
M il  = LANMAX + MIO

IERR = IERR + 8 
IERR = IERR + 16 
IERR = IERR + 32

IERR = IERR + 64

NS = NW - MT + 2* LANMAX 
NQ(1) = N-M  
DO 20 I = 2, 5 
NQ(I) = NQ(I-l) +■ N 
20 CONTINUE 
DO 25 i = 1, NW 
W(I) = 0 

25 CONTINUE

PRINT *, D O  YOU WANT TO INPUT YOUR STARTING VECTOR? 1 FOR YES OR 2 FOR NO* 
READ *, STARTINGVEC

IF (STARTINGVEC -EQ. 1) THEN
PRINT *, 'INPUT YOUR STARTING VECTOR'
DO 271=  1,N

READ *, W(I)

27 CONTINUE 
GO TO 50 
END IF

I GET RANDOM STARTING VECTOR

IRAND = N +• LANMAX + MAXPRS + NW 
IRANDOMI = IRAND
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DO 40 1= t ,N  
IRANDOM2 = I
W([) = RAN(IRANDOM 1, IRANDOM2) 

40 CONTINUE

50 CALL OPM (W, W(NQ(3)), N)

RNM2 = DDOT(N, W, W(NQ(3)))

CALL STPONE (N, W(M3), W(M4), W(M5), W(M6), W, NQ(l))
CALL LANSEL (N, LANMAX, MAXPRS, NS, ENDL, ENDR, W, W(M3), W(M4), W(M5), W(M6), EIG, 
W(Ml), W(M2), W(M10), W(MI I), W(M7), W(M8), IW, Y, W(M9), NQ, IERR)

RETURN
END

SUBROUTINE LANSEL (N,LANMAX, MAXPRS.NS, ENDL, ENDR ,R ,ALF ,BET, ALPH, BET2, EIG, TAU, 
OLDTAU, RHO, WORK, ETA, OLDETA, INFO, Y, S, NQ, IERR)

! INPUTS
r

! N
! LANMAX
! MAXPRS
! NS
! ENDL
! ENDR
EIGHNVALUES
I
! WORK SPACE
;
! R
! NQ (5)
! ALF
TRIDIAGONAL T 

BET 
! ALPH
! BET2
! TAU
! OLDTAU
! RHO
! ETA
t OLDETA
! INFO
I S
! WORK
r

! OUTPUTS
r
! EIG
! Y
VALUES 
1 NEIG
! IERR
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HOLDS 6 VECTORS OF LENGTH N. SEE THE TEXT FOR DETAILS 
CONTAINS THE POINTERS TO THE BEGINNING OF EACH VERTOR IN R. 
ARRAY OF LENGTH LANMAX TO HOLD DIAGONAL OF THE

ARRAY OF ELNGHT LANMAX TO HOLD OFF-DIAGONAL OF T 
DIAGONAL OF THE DEFLATED TRIDIAGONAL 
SQUARE OF THE OFF-DIAGONALS OF THE DEFLATED TRIDIAGONAL 
ORTHOGONALITY ESTIMATE OF RITZ VECTORS AT STEP J 
ORTHOGONALITY ESTIMATE OF RITZ VECTORS AT STEP J-l 
WORKING ARRAY USED IN DEFLAT 0
ORTHOGONALITY ESTIMATE OF LANCZOS VECTORS AT STEP J 
ORTHOGONALITY ESTIMATE OF LANCZOS VECTORS AT STEP J-I 
INFORMATION ARRAY ABOUT EIGENVECTORS OF T 
ARRAY FOR COMPUTING THE EIGENVECTORS OF THE TRIDIAGONAL 
WORKING ARRAT TO HOLD SQUARES OF ARRAY BETA

ARRAY OF LENGTH MAXPRS TO HOLD THE CONVERGED RITZ VALUES 
ARRAT OF LENGTH MAXPRS*N TO HOLD THE CONVERGED RITZ

NUMBER OF COMPUTED EIGENPAIRS 
ERRORFLAG

DIMENSION OF THE EIGENPROBELM 
UPPER LIMIT TO THE NUMBER OF LANCZOS STEPS 
UPPER LIMIT TO THE NUMBER OF WANTED EIGENPAIRS 
LENGTH OF THE ARRAY S
LEFT END OF THE INTERVAL CONTAINING THE WANTED EIGHNVALUES 
RIGHT END OF THE INTERVAL CONTAINING THE WANTED
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! SUBROUTINES : ANALZT, ENOUGH, LANSIM, ORTBND, PURGE, RITVEC

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

REAL R(NW), Y(N,MAXPRS), EIG(N), TAU(N), OLDTAU(N), S(N, MAXPRS), NQ(5), REALS(N, 
MAXPRS)
REAL ETA(LANMAX), OLDETA(LANMAX), RHO(LANMAX), WORK(LANMAX), ALPH(N), BET2(N) 
REAL ENDL, ENDR, EIGL, EIGR, ALF(N), BET(N)
INTEGER INFO(MAXPRS)

LOGICAL LASTEP, ENOUGH

COMMON /IDATA/EIGL, EIGR, NEIG 
COMMON /RDATA/RNM, RNM2, SPREAD, TOL 
COMMON /PRECISION/ EPS, EPS1, REPS 
COMMON /NW/NW

JJ = 1
ETA(l) =EPS1
EIGL = ENDL - (ENDR-ENDL)
EIGR = ENDR + (ENDR - ENDL)
NEIG = 0

! LANCZOS LOOP

DO 10 J = 2, LANMAX+l 
NBUF = NS/J 
RNM = SQRT(RNM2)

! RESTORE THE ORTHOGONALITY STATE WHEN NEEDED

CALL PURGE(R, R(NQ(1)), R(NQ(3)), R(NQ(4)), R(NQ(5)), Y, ALF, BET, S, EIG, ETA, OLDETA, TAU, 
OLDTAU, WORK, INFO, N, J-l, NBUF, IERR)

IF (IERR .GT. 0) RETURN

'. UPDATE THE RITZ VALUES

CALL ANALZT (JJ, ALPH, BET2, EIG, TAU, OLDTAU, RHO, INFO)

IF ( ENOUGH(ENDL, ENDR, MAXPRS)) GO TO 30 

IF (RNM .LT. REPS’SPREAD) GO TO 20 

IF (J .EQ. LANMAX+I) GOTO 20 

JJ = JJ+1

! TAKE A LANCZOS STEP

CALL LANSIM(R, ALF(J), BET(J), ALPH(JJ), BET2(JJ), RNM, RNM2, NQ, N, J)

! UPDATE THE ORTHOGONALITY BOUNDS

CALL ORTBND (ALF, BET, J, EPS1, ETA, OLDETA, TAU, OLDTAU, EIG, INFO, RNM, NEIG, N)

10 CONTINUE
20 J = J - I
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! COMPUTE THE REMAINING RITZ VECTORS

30 DO 50 1=1, NEIG
M = I
DO 40 K =  1, NEIG

IF (INFO(K) .GT. 0) INFO(K)=-INFO(K) 
M = MIN(ABS(INFO(K)), M)

40 CONTINUE

IF ( M .EQ. 0) THEN

CALL RITVEC(R, R(NQ(1)), R(NQ(3)), R(NQ(4)), R(NQ(5)), Y, ALF, BET, EIG, S, INFO, N, J, NEIG, 
NBUF, .TRUE., WORK, IERR)

IF (IERR .GT. 0) THEN 
RETURN

ENDIF 
ELSE 

GO TO 60 
ENDIF

50 CONTINUE 
60 CONTINUE

IF(J .EQ. LANMAX) THEN
IERR = -I
ENDIF
RETURN
END

SUBROUTINE LANSIM(R, A LF, BET, ALPH , BET2, RNM, RNM2, N Q , N, J )

! THIS ROUTINE PERFORMS A SINGLE STEP OF THE LANCZOS ALGORITHM,
! FOLLOWED BY A STEP OF LOCAL REORTHOGONALIZATION IF NEEDED.

'. INPUT/OUTPUT

'. R AN ARRAY CONTAINING [R (J) , Q (J) , Q (J - l) , P (J), MR (J) ]
! ALF THE NEW DIAGONAL OFT
! BET THE NEW OFF-DIAGONAL O FT
! ALPH THE NEW DIAGONAL OF THE DEFLATED T
! BET2 THE NEW OFF-DIAGONAL SQUARED OF THE DEFLATED T
! RNM NORM OF R (J)
I RNM2 RNM**2
1 NQ (5) LOCATION POINTERS FOR THE ARRAY R
! N DIMENSION OF THE EIGENPROBLEM
! J CURRENT LANCZOS STEP

! SUBROUTINES : DAXPY, DCOPY, DDOT, DSCAL, OPK, OPM, STORE

IMPLICIT DOUBLE PRECISION (A-H, Q-Z)
REAL NQ(5) , R(NW), T, BET, BET2, ALF, ALPH, DALF, DBET

COMMON/LANCON/ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO. FOUR, TEN 
ONE28, TW056, FIVE 12, ORTFAC, OVRFLW 
COMMON /NW/NW
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! SWAP Q (J) AND Q (J-l)

NTMP = NQ(2)
NQ(2) = NQ(1)
NQ(l) = NTMP

! Q = R/BETA

ONE = 1.0D0 
T = ONE/RNM

CALL DCOPY (N, R, R(NQ(1))) 
CALL DSCAL (N, T, R(NQ(1)))

! P = PBAR/BETA

CALL DCOPY (N, R(NQ(3», R(NQ(4)))
CALL DSCAL (N, T, R(NQ(4)))

! R = ( K INVERSE ) * Q

CALL OPK (R(NQ(4)), R, N)

! R = R  - Q( J - I) ‘ BETA

T = -RNM
CALL DAXPY (N, T, R(NQ(2)), R)

! STORE Q (J - I)

CALL STORE ( R(NQ(2)), N, J - l , 1)

! START LOCAL REORTHOGONALIZATION

BET = RNM
BET2 = RNM2 
!BET = ZERO 
ALF = ZERO

! ALF = ( R TRANSPOSE ) * P

DALF = DDOT (N, R, R (NQ(4)))

DO 10 1= 1,2
CALL DAXPY (N, -DALF, R(NQ(1)),R)

ALF = ALF ■+■ DALF 
CALL OPM (R, R(NQ(3)), N)
RNM2 = DDOT (N, R, R(NQ(3)))
ALPH = ALF

IF (RNM2*ORTFAC .GT.(ALF**2 + BET2) .OR. I .EQ. 2) RETURN

! REPEAT LOCAL REORTHOGONALIZATION WHEN WARRANTED

DALF = DDOT(N,R(NQ(l)),R(NQ(3)))
DBET = DDOT (N, R(NQ(2)), R(NQ(3)))

CALL DAXPY (N, -DBET, R(NQ(2)), R)
BET =  BET + DBET 

BETZ = BET**2 
10 CONTINUE; END

7 5
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SUBROUTINE PURGE (R  Q, RA, QA, T, Y, ALF, BET, S, EIG, ETA, OLDETA, TAU, OLDTAU, WORK, 
INFO, N, J, NBUF, IERR)

! THIS ROUTINE EXAMINES ETA, OLDETA, TAU AND OLDTAU TO DECIDE
! WHICH FORM OF REORTHOGONALIZATION IF ANY SHOULD BE PERFORMED.

! INPUT/OUTPUT

R THE RESIDUAL VECTOR TO BECOME THE NEXT LANCZOS VECTOR
Q THE CURRENT LANCZOS VECTOR
RA THE PRODUCT OF THE MASS MATRIX AND R
QA THE PRODUCT OF THE MASS MATRIX AND Q
T A TEMPORARY VECTOR TO HOLD THE PREVIOUS LANCZOS VECTORS
Y CONTAINS THE COMPUTED RITZ VECTORS
ALF THE NEW DIAGONAL OF T
BET THE NEW OFF-DIAGONAL OF T
S ECTOR FOR COMPUTING EIGENVECTORS OF T(J)
EIG OLDS THE CONVERGED RITX VALUES
ETA STATE OF ORIHOGON ALITY BETWEEN R AND PREVIOUS LANCZOS VECTORS 
OLDETASTATE OF ORIHOGONALITY BETWEEN Q AND PREVIOUS LANCZOS VECTORS 
TAU STATE OF ORIHOGONALITY BETWEEN R AND PREVIOUS RITZ VECTORS 
OLDTAU STATE OF ORIHOGONALITY BETWEEN Q AND PREVIOUS RITZ VECTORS 
WORK WORKING ARRAY EXPLAINED IN LANSEL
INFO INFORMATION ABOUT THE EIGENVECTORS OF T(J)
N DIMENSION OF THE EIGENPROBLEM
J CURRENT LANCZOS STEP
NEIG NUMBER OF RITZ VALUES
NBUF NUMBER OF VECTORS IN S

SUBROUTINES: DAXPY, DZERO, DDOT, GIVENS, IDAMAX, OPM, RITVEC, SUBTJ 

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
REAL R(N), Q(N), RA(N), QA(N), T(N), Y(N, MAXPRS), ALF(LANMAX), BET(LANMAX), S(N, MAXPRS) 
REAL EIG (MAXPRS), ETA(LANMAX), OLDETA(LANMAX), TAU (MAXPRS), OLDTAU (MAXPRS), 
WORK(LANMAX)
INTEGER INFO(MAXPRS)
LOGICAL ORTHO

COMMON/IDATA/EIGL, EIGR NEIG 
COMMON/RDATA/RNM, RNM2, SPREAD, DUMMY 
COMMON/PRECISION/ EPS, EPS I, REPS
COMMON /LANCON/ ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR TEN, ONE28, 
TW 056, FIVE 12, ORTFAC, OVRFLW 
COMMON /LANMAX/LANMAX 
COMMON /MAXPRS/MAXPRS

ORTHO = .FALSE.
TOL = REPS*SPREAD 
REPSOJ = SQRT(EPS/FLOAT(J))

!CHECK ORTHOGONALITY

K = IDAMAX (J-2, ETA, 1)
IF (ABS (ETA(K)) .GT. REPSOJ) THEN

DO 10 1=1, NEIG
IF (INFO(I) .LT. 0 .AND. ABS(TAU(I)) .GT. REPSOJ) THEN 
CALL DZERO (J, S, I)
CALL SUBTJ (ALF, BET, EIG, INFO, TOL, I, N, NEIG, J, L, K, M, WORK, IERR)
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IF (IERR .GT. 0) RETURN
CALL GIVENS (K-M+l, L-M +l, ALF(M), BET(M), EIG(I), EPS, S, RESID, RAYCOR, IERR)

IF (IERR .GT. 0) RETURN

ZETA = -DDOT (J, ETA, S)
CALL DAXPY (J, ZETA, S, ETA)

ZETA = -DDOT (J, OLDETA, S)
CALL DAXPY (J, ZETA, S, OLDETA)

END IF 
10 CONTINUE

! CHECK AGAIN

K = IDAMAX (J - 2, ETA.I)
IF (ABS(ETA(K)) .GT. REPSOJ) THEN

! GRAM-SCHMID NEEDED 

ORTHO = .TRUE.
CALL RITVEC(R, Q, RA, QA, T, Y, ALF, BET, EIG, S, INFO, N, J, NEIG, NBUF, .FALSE., WORK, IERR)

IF (IERR.GT.0) RETURN

DO 20 1 = 1 , NEIG
TAU(I) = EPS1 
OLDTAU(I) = EPS I 

20 CONTINUE

DO 3 0 I = U - 1
ETA(I) = EPS I 
OLDETA(I) = EPS1 

30 CONTINUE

ELSE

! REMOVE COMPONENTS OF A RITZ VECTOR

ORTHO = .TRUE.
DO 40 1 =  I,NEIG

IF (ABS(TAU(I)).GT. REPSOJ) THEN

TAU(I) = EPS 1 
OLDTAU(I) = EPSI 
ZETA =  DDOT(N, RA, Y (U ))
CALL DAXPY(N,-ZETA, Y (U ), R)
ZETA =  DDOT(N, QA, Y(1,I))
CALL DAXPY(N, -ZETA, Y(1,I), Q)

ENDIF
40 CONTINUE

ENDIF
ENDIF

IF (ORTHO) THEN

CALL OPM(Q,QA,N)
QNORM = SQRT(DDOT(N, Q, QA))
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CALL DSCAL(N, ONE/QNORM, Q) 
CALL DSCAL (N, ONE/QNORM, QA)

BET(J) = BET(J) * QNORM 
ZETA = DDOT(N, R, QA)
ALF(J) = ALF(J) + ZETA

CALL DAXPY(N, -ZETA,Q, R)
CALL OPM(R, RA, N)
RNM2 = DDOT(N, R, RA)
RNM = SQRT(RNM2)

ENDIF

RETURN
END
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SUBROUTINE ANALZT(J, ALF, BET2, EIG, TAU, OLDTAU, RHO, INFO)

! THIS ROUTINE UPDATES SOME EIGENVALUES OF A THIDIAGONAL T(J) USING
! THE EIGENVALUES OF T(J-l).

! INPUTS

! J ORDER OF THE TRIDIAGONAL T.
! ALF DIAGONAL OF T.
! BET2 SQUARES OF THE OFFDLAGONAL TERMS, BET2(l) = ZERO
! EIG ARRAY OF CONVERGED EIGENVALUES
! TAU ORTHOGONALITY ESTIMATE OF RITZ VECTORS AT STEP J
1 OLDTUA ORTHOGONALITY ESTIMATE OF RITZ VECTORS AT STEP J-l
! RHO WORKING ARRAY USED IN DEFLAT
! INFO INFORMATION ARRAY ABOUT EIGENVECTORS OF T

! INTERNAL VARIABLES

! THET EXTERIOR EIGENVALUES OFT. NEARLY CONVERGED
! RITZ VALUES. THET(I)=LEFTMOST, THET(NDST)=RIGHTMOST.
! NDST SIZE OF THET AND BJ
! BJ ERROR BOUND ON THET
! BJ(I) IS SET TO -1 IF THET(I) DISAPPEARS.
! NBD CONTAINS L AND R IN THE TEXT.
! SPREAD THET (NDST) - THET( 1)
! EPS PRECISION OF ARITHMETIC OPERATIONS
I IP IP = 1 FOR UPDATING LEFT END, IP = 2 FOR THE RIGHT END.
! INC INC = 1 FOR UPDATING LEFT END, INC = -1 FOR THE RIGHT END.
! IS STARTING INDEX (EITHER 1 OR NDST)
'. START LEFT BOUND ON EIGENVALUES (INC=t), RIGHT BOUND (INC—I)
! PROBE THE OUTER END OF THE NEXT SUBINTERVAL TO BE UPDATED.
! INDXOK TRUE, IF THERE ARE I-INC RITZ VALUES EXTERIOR TO THE
! NEW THET(I).

! SUBROUTINES: DEFLAT, MOVE1, NEWCOR, NUMLES

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER (NMAX = 128)

REAL ALF(LANMAX), BET2(LANMAX), TAU(LANMAX), OLDTAU(LANMAX), RHO(LANMAX), 
EIG(MAXPRS)
REAL THET(NMAX), BJ(NMAX), EIGL, EIGR, INFO(MAXPRS)

LOGICAL INSERT, INDXOK, APPEND

COMMON /IDATA/ EIGL, EIGR, NEIG 
COMMON /RDATA/ RNM, RNM2, SPREAD, TOL 
COMMON /PRECISION/ EPS, EPS1, REPS 
COMMON /ATDATA/ THET, BJ, WINDOW, NBD(2), NDST
COMMON /LANCON/ ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28, 
TW056, FIVE 12, ORTFAC, OVRFLW 
COMMON /LANMAX/LANMAX 
COMMON /MAXPRS/MAXPRS

IF (J .LE. 1) RETURN
IF (J .EQ. 2) THEN

NDST = 16 
WINDOW = FOURTH/SQRT (REPS)
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THET(l) = (ALF(l) + ALF(2) -  SQRT(FOUR*BET2(2) +  (ALF(l) - ALF(2))**2))*HALF 
THET(NDST) = ALF(l) + ALF(2) - THET(1)

BJ(1) = SQRT(RNM2/(0NE + BET2(2)/(THET(I) -  ALF(1))**2»
BJ(NDST) = SQRT(RNM2/(ONE + BET2(2)/(THET(NDST) - ALF(1))«*2))

NBD(l) = 1 
NBD(2) = NDST

SPREAD = THET(NDST) - THET(I)
RETURN

ENDIF

SPREAD = THET(NDST) - THET(l)
TOL = TWO*REPS*SPREAD 
W = WTNDOW*TOL

!!! BEGIN PHASE 1,

! LOOP FOR LEFT END, THEN RIGHT

DO 100 IP=  1,2
INC = 3 - 2*IP

IS = (NDST - 1 )*IP - (NDST - 2)
I = IS
INSERT = .FALSE.

START = (THET(I) + ALF(J) - INC*SQRT(BET2(J)*FOUR +(ALF(J) - 
THET(I))**2))*HALF

PROBE = THET(I) - INC*BJ(I)
INDXOK = NUMLES(ALF,BET2,PROBE,J,INC,EPS) .EQ. 0

DO 50 [DUMMY = I,NDST

IF (I-NBD(IP) .EQ. IN Q  GO TO 100

! EXAMINE I-TH SUBINTERVAL

IF (INDXOK) THEN
IF (INSERT) THEN 

START = THET(I)
THET(I) = START + INC*MIN(B**2/ABS(START-THET(I-INQ),B)

ELSE
IF (INT(SIGN(ONE,PROBE-START)) .EQ. INC) START = PROBE 
ENDIF

! CHECK FOR DISJOINT SUBINTERVALS

IF (I .EQ. NBD(IP)) THEN 
PROBE=THET(I)+INC*(THET(NBD(2))-THET(NBD(l)))/(FOUR*J)

ELSE
PROBE = THETa+INQ -  INC*BJ(I+INC)

ENDIF
IF (INT(SIGN(ONEJ»ROBE-THET(I))) .EQ. INQ THEN

! CHECK FOR AN EXTRA RITZ VALUE

K = NUMLES(ALF3ET2,PROBE,J,INC^PS)

IF (K -LT. ABS(I-IS+INC)) THEN 
L THET(I) DISAPPEARS

BJ(I) = -ONE 
ELSE
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! RECORD INDXOK FOR NEXT LOOP. USE REFINED C BOUNDS.

IF (.NOT. INSERT) THEN 
B = BJ(I)
INDXOK = (K .LE. ABS(I-IS+INC))
BND = MIN(B**2/ABS(PROBE-THET(I)),B) 

IF (INDXOK .AND. BND .LT. ABS(THET(I)-START))
THEN

START = THET(I) - INC*BND 
ENDIF 

ENDIF 
ENDIF

ENDIF
ELSE

! PREPARE FOR AN INTRUDING RITZ VALUE

IF ((IS .EQ. NBD(IP) -OR. BJ(NBD(IP) -  INC) .LT. W) .AND. NBD(2) - NBD(l) .GT. 1) 
NBD(IP) = NBD(IP) + INC

CALL MOVE1 (THET,I,NBD(IP),-INC,PROBE)
CALL MOVE1 (BJ,I,NBD(IP), -INC,TWO*TOL)

INSERT = .TRUE.
INDXOK = .TRUE.

ENDIF

IF (BJ(I) .GT. TOL) THEN

! USE NEWTON ITERATION TO FIND NEW THET(I)

CALL NEWCOR( ALF,BET2,START,THET,BJ,INC,I,J,NDST)

ENDIF

IF (BJ(I) .LT. 0) THEN

! THET(I) DISAPPREARS

CALL MOVE1 (THET,NBD(IP),I,INC,ZERO)
CALL MOVEl(BJ,NBD(IP),I,INC,ZERO)
NBD(IP) = NBD(IP) - INC 
INSERT = . FALSE.

INDXOK = .TRUE.

1 =  1- INC
ENDIF 

1 = 1 + INC 
50 CONTINUE

!U END OF PHASE 1

100 CONTINUE

III BEGIN PHASE 2.

! APPEND MORE RITZ VALUES AND CHECK FOR CONVERGED RITZ VALUES.

DO 200 IP = 1,2
INC = 3 -  2*IP 

IS = (NDST-1)*IP - (NDST-2)
I = IS
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DO 150 IDUMMY = I,J
NREM = J - NBD(l) - ((NDST+l) - NBD(2))
IF ((I-NBD(IP))*INC .GT. 0) GO TO 200

APPEND = I .EQ. NBD(IP) .AND. (BJ(I) .LT. W .OR. (J .EQ. 4 .AND. NBD(IP) 
-EQ. IS)) .AND. NREM .GT. 0

IF (APPEND) THEN
START = THET(I) + FLOAT(INC)*BJ(I)

PROBE = INC*(THET(NBD(2)) - THET(NBD( I )))/NREM 
END IF
IF (BJ(I) .LE. TOL) THEN

! APPLY QR ALGOR. TO DEFLATE

CALL DEFLAT(ALF,BET2,THET(I),J)

! INSERT THET(I) INTO EIG

NEIG = NEIG + I
IF (IP .EQ. I) THEN
EIGL = MAX(EIGL, THET(I))

ELSE
EIGR = MINCEIGR, THET(I))

END IF
EIG(NEIG) = THET(I)

INFO(NEIG) = 0

! REMOVE STABILIZED RITZ VALUES

CALL MOVE 1 (THET.NBD(IP), IJNQZERO)
CALL MOVE 1 (B J,NBD(IP),I,INC,ZERO)
NBD(IP) = NBD(IP) - INC 

1 = 1-INC 
END IF
IF (APPEND .AND. NBD(2) - NBD(I) .GT. I) THEN 

T =  START + PROBE 
NBD(IP) = NBD(IP) + INC

IK = ABS(IS - NBD(IP))
DO 110 IDUM = 1,J

IF (NUMLES(ALF,BET2,T,J,INC,EPS) .NE. IK) GO TO 120 
T = T +  PROBE 

110 CONTINUE
120 THET(NBD(IP)) = T

START = T-PROBE
CALL NEWCOR( ALF,BET2,START,THET3J,INC,NBD(IP),J,NDST)

ENDIF
IF (J .GT. NDST .AND. I .EQ. NBD(IP) .AND. I .NE. IS -AND. BJ(I) .GT. BJ(I- 

INC) .AND. BJ(I-INC) .GT. W) NBD(IP) = NBD(IP) - INC 
1= I + INC

150 CONTINUE 
200CONTINUE

! RE-ESTABLISH AND END MARKER, IF NECESSARY, AT EARLY STAGE

DO 300 IP =1,2
INC = 3 - 2*IP 

IS = (NDST - 1)*IP - (NDST - 2)
IF (NBD(IP) .EQ. IS - INC) THEN 
THET(IS) = THET(NBD(3 - IP))

BJ(IS) = BJ(NBD(3 - IP))
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NBD(IP) = IS 
NBD(3 - IP) = NBD(3 - IP) + INC 
ENDIF 

300 CONTINUE

RETURN
END

SUBROUTINE STPONE (N,ALF,BET,ALPH,BET2,R, NQ)

! THIS ROUTINE PERFORMS THE FIRST STEP OF THE LANCZOS ALGORITHM.
! IT PERFORMS A STEP OF LOCAL REORTHOGONALIZATION IF NEEDED.

! INPUT/OUTPUT

N DIMENSION OF THE EIGENPROBLEM
ALF THE NEW DIAGONAL O FT
BET THE NEW OFF-DIAGONAL O FT
ALPH THE NEW DIAGONAL OF THE DEFLATED T
BET2 THE NEW OFF-DIAGONAL SQUARED OF THE DEFLATED T
R AN ARRAY CONTAINING [R (J), Q(J), Q(J-I), P(J), MR(J)]
NQ(5) LOCATION POINTERS FOR THE ARRAY R

! SUBROUTINES: DAXPY, DCOPY, DDOT, DSCAL, OPK, OPM

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
REAL R(NW), ALF(LANMAX), BET(LANMAX), ALPH(LANMAX), BET2(LANMAX)
REAL NQ(5),T, DALF 
COMMON /LANMAX/LANMAX 
COMMON /NW/NW
COMMON /  RDATA /  RNM,RNM2,SPREAD,TOL 
COMMON /PRECISION/ EPS,EPS1,REPS
COMMON /  LANCON / ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28, 
TW056, FIVE 12, ORTFAC, OVRFLW

! MODIFY R TO SATISFY THE CORRECT CONDITIONS FOR SINGULAR M

T = ONE / SQRT (RNM2)

CALL DCOPY (N, R(NQ(3)), R(NQ(4)))
CALL DSCAL (N, T, R(NQ(4)))
CALL DCOPY (N, R, R(NQ(1)))
CALL DSCAL (N, T, R(NQ(1)))
CALL OPK (R(NQ(4)),R ,N)
CALL OPM(R, R(NQ(3)), N)

RNM2 = DDOT (N, R(NQ(I)), R(NQ(3)))
RNM = SQRT(RNM2)

CALL DCOPY(N, R(NQ(1)), R(NQ(2)))

BET2(l) = ZERO 
ALF(l) = ZERO 
DALF = RNM2 
BET(1) = 0
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CALL DAXPY (N, -DALF, R(NQ(l)), R)
CALL OPM (R, R(NQ(3)), N)
RNM2 = DDOT (N, R, R(NQ(3)))
RNM = SQRT(RNM2)

BET(2) = RNM 
BET2(2) = RNM2 
T= 0NE/BET(2)

ALF(1) = ALF(I) + DALF 
ALPH(l) = ALF(l)

RETURN
END
SUBROUTINE RITVEC(R,Q,RA,QA,T,Y,ALF,BET,EIG, S,INFO,N,J,NEIG,NBUF,EVONLY,WORK,IERR)

! THIS ROUTINE COMPUTES SOME RITZ VECTORS AND PERFORMS A
! REORTHOGONALIZATION OF THE LANCZOS VECTORS.

INPUT/OUTPUT

R THE RESIDUAL VECTOR TO BECOME THE NEXT LANCZOS VECTOR
Q THE CURRENT LANCZOS VECTOR
RA THE PRODUCT OF THE MASS MZTRIX AND R
QA THE PRODUCT OF THE MASS MZTRIX AND Q
T A TEMPORARY VECTOR TO HOLD THE PREVIOUS LANCZOS VECTORS
Y CONTAINS THE COMPUTED RITZ VECTORS
ALF THE NEW DIAGONAL OF T
BET THE NEW OFF-DIAGONAL OF T
EIG HOLDS THE CONVERGED RITZ VALUES
S VECTOR FOR COMPUTING EIGENVECTORS OF T(J)
INFO INFORMATION ABOUT THE EIGENVECTORS OF T(J)
N DIMENSION OF THE EIGENPROBLEM
J CURRENT LANCZOS STEP
NEIG NUMBER OF RITZ VALUES
NBUF NUMBER OF VECTORS IN S

[ EVONLY IF .TRUE. NO REORTHO. IS PERFORMED, COMPUTES ONLY RITZ VECTORS

'. SUBROUTINES: DAXPY,DDOT.DZERO,GIVENS,IDAMAX,NUMLES,STORE

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
REAL R(N),Q(N),RA(N),QA(N),T(N),Y(N,LANMAX),ALF(LANMAX),BET(LANMAX)
REAL EIG(MAXPRS),WORK(LANMAX), RESID, RAYCOR, INFO(MAXPRS),S(N,MAXPRS), SI 
LOGICAL EVONLY

COMMON /RDATA/ RNM,RMN2,SPREAD,DUMMY 
COMMON / PRECISION/ EPS,EPS1,REPS
COMMON /LANCON/ ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28, 
TW056, FTVEI2, ORTFAC, OVRFLW 
COMMON /LANMAX/LANMAX 
COMMON /MAXPRS/MAXPRS

! EPS 14 = EPS**(l/4)
! T0L14 = EPS**(1/4)*SPREAD
! TOL34 = EPS**(3/4)*SPREAD

EPS 14 = SQRT(REPS)
TOL14 = EPS I4*SPREAD 
TOL34 = REPS*TOL14
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IBUF = 0
TOL = R£PS*SPREAD 
RNEPS = RNM*EPS

NBUF = NEIG

! COMPUTE EIGENVECTORS OF T AND PUT IN THE BUFFER.

DO 30 I=NEIG,1,-1
IF (INFO(I) .GE. 0 .AND. IBUF .LT. NBUF) THEN

IF (EVONLY .AND. INFO(I) .NE. 0) GO TO 30 
IBUF = IBUF+1 
CALL DZERO(N, Y( 1,1), 1)

! EIG(I) ISOLATED

M = 1 
L = J 
K = M

CALL DZERO(J, S(l,IBUF),l)
CALL GIVENS(K-M+1, L-M+l ,ALF(M),BET(M),EIG(I),EPS 1, S(M,IBUF), RESID,RAYCORJERR) 

IF (IERR .GT. 0) GO TO 900

! CHECK THAT EIG(I) IS AN EIGENVALUE OF T

DO 5 IDUM = M, L
WORK(IDUM) = BET(IDUM)*BET(IDUM)

5 CONTINUE
ZETA = EIG(I)*(ONE - EPS14)
NUL = NUMLES(ALF(M),WORK(M), ZETA, L-M+1,1,EPS)
ZETA = EIG(I)*(ONE + EPS 14)
NUR = NUMLES(ALF(M),WORK(M), ZETA, L-M+1,I,EPS)

! EIG(I) IS NOT AN EIGENVALUE OF T, GOODBYE.

IF (NUR .EQ. NUL) THEN
IERR = IERR + 1024 
GO TO 900

ENDIF

25 INFO(I) = N*IDAMAX(J,S(1,IBUF),1) +J-1
ENDIF

30 CONTINUE

I COMPUTE THE RITZ VECTORS AND PERFORM G-S ORTHOGONALIZATION.

DO 50 1=1, J-l

! RETRIEVING THE LANCZOS VECTOR AND PUT IT IN T
CALL STORElT,N,U)
KBUF = 0
DO 40 K=NEIG,l,-l

IF (INFO(K) .GE. 0 -AND. KBUF .LT. IBUF) THEN 
KBUF = KBUF +1 

SI = S(I,KBUF)

IF(ABS(SI) .GT. EPS) CALL DAXPY(N, SI, T, Y(I,K))
ENDIF
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40 CONTINUE
IF (.NOT. EVONLY) THEN

ZETOLD = -DDOT(N, QA, T)
IF (ABS(ZETOLD) .GT. EPS) CALL DAXPY(N,ZETOLD, T, Q)

ZETA = -DDOT(N, RA, T)
IF (ABS(ZETA) .GT. RNEPS) CALL DAXPY(N,ZETA, T, R)

END IF 
50 CONTINUE

! ADD IN CONTRIBUTION OF QJ TO Y
KBUF = 0 
DO 60 I=NEIG.l,-l

IF (INFO(I) .GE. 0 .AND. KBUF .LT. IBUF) THEN 
KBUF = KBUF + I 

IF (ABS(S(J,KBUF)) .LT. EPS1) INFO(I) = -INFO(I)
CALL DAXPY(N, S(1,KBUF), Q, Y(1,I))
ENDIF 

60 CONTINUE
900 RETURN
END
SUBROUTINE INPUTKEM(N)

! THIS PROGRAM TAKES DATA OF THE ELEMENTS IN MASS AND STIFFNESS MATRICES
AND
! PUT THEM IN SEPERATED FILES

IMPLICIT DOUBLE PRECISION(A-H.O-Z)
REAL KE(N,N), M(N,N)
INTEGER STIFF, MASS

! INPUT
! N SYSTEM SIZE

'.OUTPUT
! MASS AND STIFFNESS MATRICES

PRINT *,'DO YOU WANT TO INPUT STIFF METRDC NOW? I FOR YES OR 2 FOR NO’
READ *,STIFF 
IF (STIFF .EQ. I) THEN

OPEN (13,FILE=,KEDATA',STATUS=NEW)
DO 5 1=1,N

PRINT *,"INPUT DATA OF ",I," LINE OF KE”
DO 10 J=1,N

READ (*,*) KE(I,J)
WRITE (13,*) KE(LJ)

10 CONTINUE 
5 CONTINUE

REWIND 13

CLOSE(13, STATUS=’KEEP')

ENDIF

PRINT *,’DO YOU WANT TO INPUT MASS METRDC NOW? 1 FOR YES OR 2 FOR NO*
READ *,MASS

IF (MASS .EQ. I) THEN
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OPEN ( 14,FILE-MD ATA’,STATUS=’NEW’)
DO 15 1=1,N

PRINT *,"INPUT DATA OF \I ,"  LINE OF M" 
DO 20 J=1,N

READ (*,*) M(I,J)
WRITE (14,*) M(I,J)

20 CONTINUE 
15 CONTINUE

REWIND 14

CLOSE(14, STATUS-KEEP')
END IF

PRINT *,' KE M’

DO 25 1=1, N 
PRINT *, (KE(I,J), J=1,N),’ ', (M(I,J), J=1,N)

25 CONTINUE

RETURN
END

SUBROUTINE OPK( X, Y, N)

! THIS PROGRAM PERFORMS SOLVING THE LINEAR SYSTEM OF EQUATION Ky=x
! K IS RECEIVED FROM STORED FILE

INTEGER N,C,U 
REAL X(N), Y(N), KE(N,N)

! INPUT VECTOR X

! OUTPUT VECTOR Y

OPEN (13.FILE-KEDATA’,STATUS-OLD')

DO 5 1=1,N 
DO 10 J=1
READ(13,*) A,B,KE(I,J)
10 CONTINUE 
5 CONTINUE

REWIND 13

CLOSE(13, STATUS='KEEP’)

100 FORMAT(I3,I3E53)

U = 1 
C=1 
1=1
DO WHILE a  -LE. N)

Y(C)=0

D O 20J=l,N  
Y (Q  = KE(IJ)*X(U) + Y(C)
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U=U+1 
20 CONTINUE 
C=C+1 
1= 1+1 
U=1

END DO

RETURN
END

SUBROUTINE OPM(X,Y,N)

'.THIS PROGRAM PERFORMS SOLVING THE LINEAR SYSTEM OF EQUATION y = Mx 
!M IS RECEIVED FROM STORED FILE

INTEGER N,C,U 
REAL X(N), Y(N), M(N,N)

'.INPUT VECTOR X

'.OUTPUT VECTOR Y

OPEN (14,FILE=’MDATA’,STATUS='OLD')

DO 5 I=I,N 
DO I0J= I,N  
READ(14,*) A,B,M(I,J)
100 FORMAT(I3,13^5.3)

10 CONTINUE 
5 CONTINUE

REWIND 14
CLOSE(I4, STATUS='KEEP*)

U = 1 
C=1 
1=1
DO WHILE (I .LE. N)

Y(C)= 0

DO 20 J=l,N 
Y(C) = M(IJ)*X(U) + Y (Q  
U=U+I 

20 CONTINUE 
C=C+I 
1= 1+1 
U=1

END DO

RETURN
END
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SUBROUTINE GIVENS(K,J,ALF,BET,THET,EPS,S,RES,CORJERR)

! GIVENS RECURRENCE FOR COMPUTING IEGENVECTORS OF A TRIDIAGONAL T.

! INPUTS

! K INDEX OF THE RIGHT HAND SIDE E(K)
! J DIMENSION OF THE TRIDIAGONAL MATRIX
! ALF(J) DIAGONALS OFT
! BET(J) OFF=DlAGONALS OF T
! THET EIGENVALUE O FT
! EPS COMPUTER PRECISION

! OUTPUTS

! S(J) COMPUTED EIGENVECTOR
! RES NORM OF THE RESIDUAL
! COR RAYLEIGH CORRECTION FOR THET

! SUBROUTINES: DSCAL

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
REAL ALF(J), BET(J), S(J), THET, SUM2, F, RES, COR

! OVRFLW IS THE MACHINE OVERFLOW THRESHOLD

COMMON / LANCON/ ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO,FOUR, TEN, ONE28, 
TW056, FIVE 12, ORTFAC, OVRFLW

! BACKWARD RECURRENCE

BIG = SQRT(OVRFLW/FLOAT(J+1))
RES = ZERO

S(J) = ONE 
SUM2 = ONE 
IF (K .LT. J) THEN

S(J-1) = -(ALF(J) - THET)*S(J)/BET(J)
SUM2 = SUM2 + (S(J-1)**2)

END IF

DO 10 I = J-l, K+1,-1
S(I-l) = -((ALF(I) - THET)*S(I) + BET(I+1)*S(I+1))/BET(I)

! SCALE TO AVOID OVERFLOW

IF (ABS(S(I-1)) .GT. BIG) THEN 
F = ONE/S(I-l)
S(I-I) = ONE
CALL DSCAL(J-I+1, F, S(I))
SUM2 = (SUM2*F)*F 
END IF 

SUM2 = SUM2 -r S(I-l) “  2 
10 CONTINUE

! STOP EXECUTION GRACEFULLY IF S(K) IS EXACTLY ZERO

IF (S(K) .EQ. ZERO) THEN
IERR = IERR + 256

RETURN
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END IF 
F = ONE/S(K)
S(K) = ONE
SUM2 = (SUM2*F) * F

CALL DSCAL (J-K, F, S(K+1))

IF(fC.LE. t) GO TO 30

! FORWARD RECURRENCE

X = ZERO 
S(I) = ONE 
SUM 1 = ONE 
IF (K.GT.2) THEN
S(2) = -((ALF( I )-THET) *S( 1 ))/BET(2)
SUM1=SUM1 + S (2 )**2

DO 20 I = 2,K.-2
S(I+I) = -((ALF(I) - THET)*S(I) + BET(I) * S(I-I))/BET(I+l) 
IF (ABS(S(I+I)) -GT. BIG) THEN 
F = ONE/S(I+l)
S(I+l) = ONE 
CALL DSCAL(I,F,S)
SUM1 = (SUMl*F)*F 
END IF
SUM1= SUM I + S(I+1) **2 

20 CONTINUE
X = BET(K-1) * S(K-2)

END IF
X = -(X + (ALF(K-1) - THET)*S(K-1))/BET(K)

! MATCH X WITH S(K)

IF (X.EQ. ZERO) THEN 
RES = ONE

RETURN 
END IF

F = S(K)/X
CALL DSCAL(K-1, F, S)
SUM2 = SUM2 + SUM 1 *F**2 
RES = BET(K) * S(K-1)

' NORMALIZE S

30 F = ONE/SQRT (SUM2)

CALL DSCAL (J ,F ,S )
RES = R£S*F + (ALF(K) -  THET) *S(K)
IF ( K .LT. J) RES = RES +  BET (K+1)*S(K+1)
COR = S(K)*RES 
RES = ABS(RES)

RETURN
END
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SUBROUTINE NEWCOR(ALF,BET2,ZETA,THET,BJ,INC,INDX,J,NDST)

! COMPUTES EXTERIOR EIGENVALUES OF A TRIDLAGONAL USING A
! COMBINATION OF BISECTIONS AND NEWTON’S NETHOD

1 INPUT

! ALF DIAGONAL O FT
! BETZ SQUARES OF THE OFFDIAGONAL TERMS, BET2(l) = ZERO
! SPREAD THET(NDST) - THET(I)
! INC INC = 1 FOR UPDATING LEFT END, INC = - 1 FOR THE RIGHTEND.
! INDX INDEX OF TO-BE-UPDATED THET.
! J ORDER OF THE TRIDIAGONAL T.
! NDST SIZE OF THET AND BJ

! INPUT/OUTPUT

! ZETA EXTERIOR BOUND FOR EIGENVALUE O FT  IN THETflNDX]
! THET EXTERIOR EIGENVALUES OF T, NEARLY CONVERGED RITZ VALUES,
! THET (1) = LEFTMOST, THET(NDST) = RIGHTMOST.
'. BJ ERROR BOUDN ON THET

! SUBROUTINES : NUMLES, QLBOT

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER (MAXBIS = 15, MAXNEW = 40)
REAL ALF(LANMAX),BET2(LANMAX),THET(NDST), BJ(NDST)

COMMON /RDATA/ RNM, RNM2,SPREAD,TOL 
COMMON /PRECISION/EPS, EPS1, REPS
COMMON /LANCON /ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28,
TW056, FIVE 12, ORTFAC, OVRFLW
COMMON /LANMAX/LANMAX
COMMON /MAXPRS/MAXPRS
COMMON /NW/NW
COMMON/N/N

ZOLD = ZETA 
IF (J .EQ. 1) THEN

ZETA = THET(INDX)
THET(INDX) = ALF(J)
BJ(INDX) = SQRT(RNM2)
RETURN

END IF

I PERFORM BISECTION FOR AN IMPROVED ZETA

IS = ((NDST + 1) -  (NDST -I) * INQ/2 
FACT = FIVE 12*FLO AT( J)*LOG(FLOAT(J))
WIDTH = (THET(INDX) - ZETA)*HALF 
IF (WIDTH .EQ. ZERO) THEN

WIDTH = BJ(INDX)*HALF
END IF
IOLD = ABS(IS - INDX)
DO 10 IDUMMY = 1, MAXBIS

IF (ABS(WIDTH)*FACT .LE. ABS(THET((NDST + I) - IS) - THET(INDX))) GO TO 20 
ZNEW = ZETA -t- WIDTH
INEW = NUMLES(ALF, BET2, ZNEW, J, INC, EPS)
WIDTH = WIDTH’ HALF 
IF (INEW .EQ. IOLD) THEN

91

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

ZETA = ZNEW
END IF

10 CONTINUE
20 CONTINUE

DO 50 IDUMMY = I, MAXNEW
U = ALF(l) - ZETA 

IF (U .EQ. ZERO) U = TENTH*EPS*BET2(2)
RAT = ONE/U 
SUM = RAT 
DO 30 I = 2J

H = BET2(I)/U 
U = ALF(I) - ZETA -H
IF (U .EQ. ZERO) U = TENTH*EPS*(H + BET2(I))
RAT = (ONE + H*RAT)/U 
SUM = SUM + RAT 

30 CONTINUE
BOT2 = U*SUM

'. DEFLATION

DO 40 I = IS, INDX-INC.INC
DEL = ZETA - THET(I)
IF (ABS(DEL) XT. EPS*ABS(ZETA)) THEN 
DEL = EPS*ABS(ZETA)
END IF
SUM = SUM + ONE/DEL 

40 CONTINUE

I CHECK FOR CONVERGENCE

ZNEW = ZETA + ONE/SUM 
ZETA = ZNEW
IF (SPREAD + TENTH/SUM .EQ. SPREAD .OR. FLOAT(INC)/SUM .LT. ZERO) THEN 
GO TO 60 
END IF 

50 CONTINUE
60 CONTINUE

CALL QLBOT(ALF,BET2,ZETA30T2,J)

ZNEW = THET(INDX)
THET(INDX) = ZETA 
ZETA = ZNEW
BJ(INDX) = SQRT(RNM2*BOT2)

RETURN
END
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SUBROUTINE ORTBND (ALF, BET, J, EPS1, ETA, OLDETA, TAU, OLDTAU, EIG, INFO, RNM, NEIG, N)

! UPDATE THE ETA AND TAU RECURRENCES.

! INPUTS

! ALF (J)
! BET (J)
! J
! EPS1
! ETA (J)
! OLDETA (J)
! TAU (NEIG)
! OLDTAU (NEIG)
! EIG (NEIG)
! INFO (NEIG)
! RNM
! NEIG
! N
i

! OUTPUTS
i

! ETA(J) ORTHOGONALITY ESTIMATE OF LANCZOS VECTORS AT STEP J+l
! OLDETA (J) ORTHOGONALITY ESTIMATE OF LANCZOS VECTORS AT STEP J
! TAU (NEIG) ORTHOGONALITY ESTIMATE OF RITZ VECTORS AT STEP J+I
! OLDTAU (NEIG) ORTHOGONALITY ESTIMATE OF RITZ VECTORS AT STEP J

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
REAL ALF(LANMAX), BET(LANMAX), ETA(LANMAX), OLDETA(LANMAX), TAU(LANMAX), 
OLDTAU(LANMAX)
REAL EIG(MAXPRS), INFO(MAXPRS)
COMMON /LANCON/ ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28, 
TWOS6, FIVE 12, ORTFAC, OVRFLW 
COMMON /MAXPRS/MAXPRS 
COMMON /LANMAX/LANMAX

IF (J .GT. I) THEN
OLDETA(l) = ( BET(2)*ETA(2) + (ALF(1) -  ALF(J))*ETA(1) - BET(J)*OLDETA(l)) /  RNM 

JI = J - 1
IF (J .GT. 2) THEN

DO 100 K=2, J 1
OLDETA (K) = (BET (K+1)*ETA (K+l) + (ALF (K) - ALF (J) )• ETA (K) + BET 

(K)*ETA (K-l) - BET(J)*OLDETA(K) ) /  RNM 
100 CONTINUE

END IF

DO 200 K = l,J l
T  = OLDETA(K)
OLDETA (K) = ETA(K)
ETA (K) = T 

200 CONTINUE

END IF

ETA(J) = EPS 1 *MAX(BET(2)/RNM, ONE)

I UPDATE THE TAU RECURRENCE.

DO 300 1=1, NEIG
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DIAGONAL OF THE TRIDIAGONAL T 
OFF-DIAGONAL OF T 
DIMENSION OF T
ROUNDOFF ESTIMATE FOR DOT PRODUCT OF TWO UNIT VECTORS
ORTHOGONALITY ESTIMATE OF LANCZOS VECTORS AT STEP J
ORTHOGONALITY ESTIMATE OF LANCZOS VECTORS AT STEP J - 1
ORTHOGONALITY ESTIMATE OF RITZ VECTORS AT STEP J
ORTHOGONALITY ESTIMATE OF RITZ VECTORS AT STEP J - 1
ARRAY OF CONVERGED EIGENVALUES
INFORMATION ARRAY ABOUT EIGENVECTORS OF T
NORM OF THE NEXT RESIDUAL VECTOR
NUMBER OF CONVERGED EIGENVALUES
DIMENSION OF THE EIGENPROBLEM
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IF ( INFO(I) .NE. 0 ) THEN 
T = TAU(I)
TAU (I) = (EIG(I) - ALF(J))*TAU(I) - BET(J)*OLDTAU(I) 
OLDTAU(I) = T 

END IF 
300 CONTINUE

RETURN
END
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SUBROUTINE QLBOT( ALF,BET2,THET,BOT,J)

! COMPUTES THE BOTTOM ELEMENT OF THE NORMALIZED EIGENVECTOR OF A
! TRIDIAGONAL MATRIX CORRESPONDING TO EIGENVALES THET.

! INPUTS

! ALF(J) DIAGONALS O FT
! BET2(J) SQUARE OF THE OFF-DIAGONALS O FT
! THET EIGENVALUE O FT
! J DIMENSION OF THE TRIDIAGONAL MATRDC

! OUTPUTS

! BOT BOTTOM ELEMENT OF THE NORMALIZED EIGENVECTOR

IMPLICIT DOUBLE PRECISION(A-H.O-Z)
REAL ALF(LANMAX),BET2(LANMAX)

COMMON /LANCON /ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO,FOUR, TEN, ONE28, TW056, 
FIVE 12, ORTFAC, OVRFLW 
COMMON /LANMAX/LANMAX

BOT = ONE 
C = ONE 
S = ZERO 
G = ALF(J) - THET 
P = G**2

DO 100 I = J-I, I ,-l
B = BET2(I+ 1)
R = P + B 
OLDC = C 
C = P/R 
S =  B/R 
OLDG = G 
A = ALF(I)
G = C*(A - THET) - S’OLDG 
IF (C .EQ. ZERO) THEN 

P = OLDC’B
ELSE

P = G**2/C
END IF 
BOT = BOT*S 

100 CONTINUE

RETURN
END
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SUBROUTINE SUBTJ (ALF, BET, EIG, INFO, TOL, I, N, NEIG, J, L, K, M,U, IERR)

THIS ROUTINE SCANS BACK THROUGH THE CONVERGED EIGENVALUES 
FOR COPIES OF EIG(I) TO DETERMINE THE SUBMATRIX T(M, L) AND 
THE RIGHT HAND SIDE E(K) FOR THE GIVENS RECURRENCE.

INPUTS

EIG(NEIG)
INFOfNEIG)
TOL

LIST OF THE CONVERGED EIGENVALUES 
INFORMATION ABOUT THE EIGENVECTORS 
TOLERANCE FOR FINDING COPIES OF EIG(I) 
INDEX OF THE EIGENVALUE CONSIDERED 
DIMENSION OF THE EIGENPROBLEM 
NUMBER OF EIGENVALUES IN EIG

N
NEIG

OUTPUTS

K
L
M

INDEX OF THE RIGHT HAND SIDE FOR GIVENS 
INDEX OF THE LAST ELEMENT OF THE SUBMATRIX 
INDEX OF THE FIRST ELEMENT OF THE SUBMATRIX

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
REAL ALF(LANMAX), BET(LANMAX), EIG(MAXPRS), U(LANMAX)
INTEGER INFO(MAXPRS)

COMMON /LANCON/ ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO,FOUR, TEN, ONE28, TW056, 
FIVE 12, ORTFAC, OVRFLW
COMMON /RDATA/ RNM, RNM2, SPREAD, DUMMY 
COMMON /PRECISION/ EPS 
COMMON /LANMAX/LANMAX 
COMMON /MAXPRS/MAXPRS

L = J
EIGI = EIG(I)

! CHECK SOPECIAL CASE OF EIGI = ALL ALTERNATE ALF’S

DO 10 JM = J, 1,-2
IF (ABS (ALF(JM) -  EIGI) .GE. EPS*SPREAD) GO TO 20 

10 CONTINUE

! FALSE RITZ VALUE ACCEPTED, STOP EXECUTION GRACEFULLY.

IERR = IERR + 2048 
RETURN

! RUN RECURRENCE UNTIL "PIVOT = DIAGONAL ” TO FIND M

20 U(JM) = (ALF(JM) -  EIGI)*(ONE - TEN*EPS)
UMIN = ABS (U(JM) )
IUMIN = JM
DO 30 M = JM-1, 1,-1

U(M) = ALF(M)-EIGI-BET(M+I )**2/U(M+1)
IF (ABS (U(M)) .LT. TOL*EIGHTH) GO TO 40 
IF (ABS (U(M)) .LE. UMIN) THEN 

UMIN = ABS(U(M))
IUMIN = M 

END IF 
30 CONTINUE
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! TEMPORARILY

M = IUMIN

! NOW SET K

40 IF (M .EQ. I) THEN
K = M 
ELSE 
K = M+1 
ENDIF

! NOW CHECK FOR CLOSE EIGENVALUES

IF (M .GT. 1)THEN
DO 50 II =1-1, 1,-1
IF (ABS(EIGI-EIG(11)) .LT. ONE28*EPS*SPREAD) GO TO 60 

50 CONTINUE

RETURN

60 KPREV = MOD( ABS(INFO(11)), N)
IF (KPREV .LE. K) K = KPREV+1

ENDIF

! FIND L

DO 200 12 = 1+1, NEIG
IF (ABS (EIGI -  EIG(I2)) .LT. TOL) GO TO 210 

200 CONTINUE
210 IF (12 .LE. NEIG) THEN

L = ABS(INFO(I2))/N - 1 
IF (INFO(I2) .EQ. 0) L = MOD (ABS(INFO(I)), N)

ENDIF

RETURN
END
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SUBROUTINE DEFLAT(ALF,BET2,THET,J)

THIS ROUTINE PERFORMS DEFLATION OF T USING SHIFT THET. 

INPUTS

ALF(J) DIAGONALS OF T
BET2(J) SQUARES OF OFF-DIAGONALS OF T
THET EIGENVALUE OF T TO BE DEFLATED EXPLICITLY
J DIMENSION OF THE TRIDIAGONAL MATRIX

! OUTPUTS

! ALF(J - I) MODIFIED DIAGONALS OF T
! BET2(J - I) MODIFIED OFF-DIAGONALS OF T

IMPLICIT DOUBLE PRECISION(A-H.O-Z)
PARAMETER (MAXITR = 3)
REAL ALF(J)3ET2(J), THET

COMMON /RDATA /RNM,RNM2,SPREAD,TOL 
COMMON /PRECISION/EPSJEPS1,REPS
COMMON /LANCON /ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28, 
TW056, FIVE 12, ORTFAC, OVRFLW

! PWK ALGORITHM

DO 200 LOOP = I MAXITR 
C = ONE 
S = ZERO 
G = ALF(l) - THET 
P = G**2 
DO 1001= l ,J - l  
B = BET2(I+ 1)
R = P + B 
BET2(I) = S * R 
OLDC = C 
C =  P/R 
S = B/R 
OLDG = G 
A = ALF(I + I)
G = C*(A - THET) - S*OLDG 
ALF(I) = OLDG + (A - G)
IF (C .EQ. ZERO) THEN 

P = OLDC * B
ELSE

P=G*(G/C)
ENDIF

100 CONTINUE

BET2(J) = S * P 
ALF(J) = G + THET 
IF (BET2(J) .LE. EPS’SPREAD) THEN 

GO TO 300
ENDIF
200 CONTINUE
300 J = J - 1

RETURN
END
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SUBROUTINE MOVE 1(Y,K,L,MINC,T)

! MOVES THE CONTENT OF Y TO OPEN A SPACE FOR T.

! INPUT/OUTPUT

! Y THE ARRAY TO TO BE REORGANIZED
! K THE POSITION IN Y OF THE NEW ELEMENT T
! L END OF THE DATA IN Y
! MINC THE INCREMENT + 1 O R -1
! T THE NEW ELEMENT TO BE INSERTED

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
REAL Y(L)

DO 100 I = L, K - MINC,MINC
Y(I) = Y(I + MINC)

100 CONTINUE
Y(K) = T

RETURN
END

99

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

SUBROUTINE STORE(V, N, JI, ISW)

REAL TEMPV(N,N),V(N)
INTEGER JI, ISW, N
LOGICAL STOREFIRST
COMMON /STOREFIRST/STOREFIRST

IF (STOREFIRST) THEN

OPEN (15, FILE=TEMPV, STATUS='NEW)

DO 50 1=1, N 
DO 100 J=l,N 
WRITE (15,*) 0 
100 CONTINUE 
50 CONTINUE

REWIND 15

STOREFIRST = .FALSE.
ELSE

GOTO 1500 

ENDIF
1500 OPEN (15, FILE=TEMPV’,STATUS—OLD')

DO 5 t=t,N 
DO 10J=t,N

READ (15,*) TEMPV (I,J)

10 CONTINUE 
5 CONTINUE 
REWIND 15

IF (ISW .EQ. I) THEN 
DO 15 1=1, N 

TEMPV (JI,I) =V(I)
15 CONTINUE

DO 5001=1 JM 
DO 1000 J=1,N 
WRITE(15,*) TEMPV(IJ)
1000 CONTINUE 
500 CONTINUE 
REWIND 15 
ENDIF

IF (ISW .EQ. 2) THEN 
DO 20 1=1,N 

V(I) = TEMPV(JI,I)
20 CONTINUE 
REWIND 15 
ENDIF

CLOSE(15, STATUS-KEEP”)
RETURN
END
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FUNCTION RAN(RANDOM 1, RANDOM2)

[THIS PROGRAM RANDOMLY SELECT A NUMBER TO PUT INTO STARTING VECTOR 

[INPUT RANDOM 1, RANDOM2 

[OUTPUT RAN

IMPLICIT DOUBLE PRECISION(A-H.O-Z)
REAL HI, H2, H3
INTEGERS RANDOM I, RANDOM2 
CALL RANDOM_NUMB ER (HI)
CALL RANDOM_NUMBER (H2)
CALL RANDOM_NUMB ER (H3)

10 IF (HI*H2 .LT. 0.5) THEN

20 IF (H3 .GE. I) THEN
GO TO 30
ELSE
H3 = H3*10 
GOTO 20 
ENDIF 
ENDIF

30 IF (H3 .GT. 5) THEN 

RAN= RANDOM 1 

ELSE

RAN = RANDOM2

ENDIF
END
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SUBROUTINE DSCAL(N,B,Y)

! THIS PROGRAM PERFORMS SCALAR MULTIPLICATION OF MATRIX 
'.INPUT ORIGINAL MATRIX Y AND SCALAR B 
IOUTPUT MULTIPLICATED MATRIX Y

REAL Y(N),B

DO 5 I=l,N 
Y(I) = B*Y(I)
5 CONTINUE

RETURN
END

SUBROUTINE DAXPY(N, A, X, Y)

'.THIS PROGRAM PERFORMS Y=AX+Y 
!INPUT MATRIX Y, X AND SCALAR A 
IOUTPUT CALCUALTED Y

IMPLICIT DOUBLE PRECISION (A-H, O-Z) 
INTEGER N 
REAL A, Y(N), X(N)

DO 5 1=1,N 
Y(I) =A*X(I) + Y(I)
5 CONTINUE

RETURN
END

SUBROUTINE DCOPY(N,X,Y)

ITHIS PROGRAM PERFORMS COPYING X AND PUTINTO Y 
! INPUT MATIRIX X 
IOUTPUT MATIRXY

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

INTEGER N 
REAL X(N), Y(N)

DO 5 1=1,N 
Y(I) =X(I)
5 CONTINUE

RETURN
END
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SUBROUTINE DZERO(N,Y,C)

'.THIS PROGRAM RESET THE ELEMENTS OF A VECTOR Y TO ZERO 
IINPUTY
IOUTPUT ZERO MATRIX Y

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

REAL Y(N), C

DO 5 1=1,N 
Y(I) = 0  
5 CONTINUE

RETURN
END

FUNCTION

LOGICAL FUNCTION ENOUGH (ENDL, ENDR, MAXPRS)

I EXMAINE IF ENOUGH EIGENVALUES HAVE CONVERGED

I INPUT

! ENDL LEFT END OF THE INTERVAL CONTAINING THE WANTED EIGENVALUES
! ENDR RIGHT END OF THE INTERVAL CONTAINING THE WANTED
EIGENVALUES
I MAXPRS UPPER LIMIT TO THE NUMBER OF WANTED EIGENPAIRS

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER (NMAX = 128)

COMMON/ATDATA/THET(NMAX) , BJ(NMAX) , WINDOW, NBD(2) , NDST 
COMMON/IDATA/EIGL, EIGR, NEIG

ENOUGH = .TRUE.
IF ( NEIG .GT. MAXPRS ) RETURN

ENOUGH = (THET (I) .GT. ENDL A N D . THET (NDST) .LT. ENDR ) AND. ( ( EIGL .GT. ENDL .AND. 
EIGL .LT. ENDR) .OR ( EIGR .GT. ENDL AND. EIGR .LT. EN D R))

RETURN
END
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INTEGER FUNCTION NUMLES(ALF3ET2, ZETA, N, INC.EPS)

ROUTINE TO PERFORM THE SPECTRUM SLICING OF A TRIDIAGONAL MATRIX.

IF INC = I, NUMLES RETURNS THE NUMBER OF EIGENVALUES BELOW ZETA. 
IF INC = - I , NUMLES RETURNS THE NUMBER OF EIGENVALUES ABOVE ZETA.

INPUTS

ALF(N)
BET2(N)

DIAGONALS O F T
SQUARE OF THE OFF-DIAGONALS OF T 
THE SHIFT TO BE APPLIED TO T 
DIMENSION OF THE TRIDIAGONAL MATRIX 
INDEX TO INDICATE ABOVE OR BELOW 
COMPUTER PRECISION

ZETA
N
INC
EPS

OUTPUTS

NUMLES THE NUMBER OF EIGENVALUES ABOVE/BELOW ZETA.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
REAL ALF(LANMAX), BET2(LANMAX), SAVE

COMMON /LANCON /ZERO, TENTH, EIGHT, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28, TW056, 
FTVE12, ORTFAC, OVRFLW 
COMMON /LANMAX/LANMAX

SAVE = BET2(1)
BET2(I) = ZERO 
DEL = ONE 
K =  0
DO 10 J=  1,N

DEL = (ALF(J) - ZETA) - BET2(J)/DEL 
IF (DEL -EQ. ZERO) DEL = EPS*BET2(J + I) * INC 
IF (DEL .LT. ZERO) K = K + I 

10 CONTINUE

NUMLES = K
IF (INC .LT. 0) NUMLES = N - K 
BET2(1) = SAVE

RETURN
END
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FUNCTION GETEPS (IBETA, IT, IRND)

! THIS PROGRAM DETERMINES THE COMPUTER PRECISIONA AND COMPUTES UNIT ROUNDOFF 
ERROR

! OUTPUT IBETA, IT, IRND AND COMPUTER PRECISION EPS 

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COMMON / LANCON / ZERO, TENTH, EIGHTH, FOURTH, HALF, ONE, TWO, FOUR, TEN, ONE28, 
TW056, FIVE 12, ORTFAC, OVRFLW

! DETERMINE IBETA, BETA

A = ONE
10 A = A + A
IF (((A + ONE) -  A) - ONE .EQ. ZERO) GO TO 10 
B = ONE
20 B = B + B
IF ( ( A + B) - A .EQ. ZERO) GO TO 20
IBETA = INT (SNGL ((A + B) - A))
BETA = FLOAT (IBETA)

! DETERMINE IT, IRND

IT = 0 
B = ONE
30 IT = IT + 1
B = B * BETA
IF (((B + ONE)- B)-ONE .EQ. ZERO) GO TO 30 
IRND = 0
BETAMl = BETA-ONE
IF ((A + BETAMl)-A .NE. ZERO) IRND = I

! DETERMINE EPS

BETAIN = ONE /  BETA 
A = ONE
DO 40 I = 1, IT +  3 
A = A * BETAIN 
40 CONTINUE

50 IF ((ONE + A) -  ONE .NE. ZERO) GO TO 60

A = A* BETA 
GO TO 50 
60 EPS = A
IF ((IBETA .EQ. 2) .OR. (IRND .EQ. 0)) GO TO 70 
A = (A*(ONE + A)) /  (ONE + ONE)
IF ((ONE + A)-ONE .NE. ZERO) EPS = A 
70 GETEPS = EPS

RETURN
END
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FUNCTION DDOT(N,X,Y)

'.THIS FUNCTION PERFORMS EUCLIDEAN INNER PRODUCT OF MATIRX X AND Y 
!INPUT MATRIX X AND Y 
[OUTPUT DDOT

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER N 
REAL X(N), Y(N)

DDOT=0 
DO 5 1=1,N
DDOT = DDOT +■ X(I)*Y(I)
5 CONTINUE

RETURN
END

FUNCTION IDAMAX(N,V,Q

'.THIS PROGRAMS FINDS THE INDEX OF THE ELEMENT OF A VECTOR V WITH MAXIMUM 
ABSOLUTE VALUE 
'.INPUT VECTOR V 
'OUTPUT INDEX IDAMAX

IMPLICIT DOUBLE PRECISION(A-H.O-Z)
INTEGER N 
REAL V(N)

IDAMAX = I 
MAXI= ABS(V(1))

DO 5 1=2,N
IF (ABS(V(I)) .GT. MAXI) THEN 

MAXI = ABS(V(I))
IDAMAX = I

ENDIF 
5 CONTINUE

RETURN
END
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APPENDIX C 

DEFINITION OF VARIABLE USED IN LANCZOS 

ALGORITHM PROGRAM PACKAGE
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ALF

ALPH

BET

BET2

BJ

BOT

COR

EIG

ENDL

ENDR

EPS 

EPS I 

vectors 

ETA

EVONLY

An array containing elements o f diagonal of [T]

An array containing elements o f diagonal of deflated tridiagonal matrix 

An array containing elements of off-diagonal o f [T]

An array containing elements o f squares of the Off-diagonal terms, 

BET2(1) = 0

An array containing element of error bounds of elements in THET,

BJ(I) is set to -1 if  THET(I) has been converged

A value containing the bottom element of the normalized eigenvector

A variable containing the Rayleigh correction for THET

An array containing elements o f converged eigenvalues

A value containing the left end o f the Interval containing the wanted

eigenvalues

A value containing the right end o f the Interval containing the wanted

eigenvalues

The computer precision

A value containing roundoff estimate for dot-product o f two unit

An array containing elements o f orthogonality estimate o f Lanczos 

vectors at step J

A logical variable used in controlling subroutine RITVEC, computed 

by subroutine PURGE. When true, no reorthogonalization is 

performed. When false, it is perform as well as computing Ritz vector

108

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

I

EERR

INC

INDX

INDXOK

INFO

IP

IS

IW

J

K

L

A value used by subroutine SUBTJ representing the index of the 

eigenvalue being considered 

The error indicator

A variable used in subroutine ANALZT, INC = 1 means updating left 

end, INC = 2 means updating right end

A value used in subroutine ANALZT indication the index of to-be- 

updated THET

A logical variable used in subroutine ANALZT, the value is true if  

there are (I-Inc) Ritz values exterior to the new THET(I)

An array containing elements o f convergence information of 

eigenvalues o f T

A variable used in subroutine ANALZT, IP = 1 means updating left 

end, IP = 2 means updating right end

A management variable used in subroutine ANALZT representing the 

starting index (1 or NDST)

An working array o f length MAXPRS

Ranking of the current step o f Lanczos algorithm

A value used by subroutine SUBTJ representing the index o f the right

hand side in subroutine

A value used by subroutine SUBTJ representing the index o f the last 

element of the sub-matrix

109

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

L A value used in subroutine MOVE1 representing the end o f the data in

vector Y

LANMAX A value containing the upper limit o f the number of Lanczos step

M A value used by subroutine SUBTJ representing the index o f the first

element of the sub-matrix 

MAXPRS A value containing the upper limit of the number o f wanted eigenpairs

MINC A value used in subroutine MOVE1 representing the increment +1 or -

1

NDST A number o f size o f  THET and BJ

N A value containing the size o f the pursuing eigenproblem

NBD A value containing L and R in the text

NBUF A value representing the number of vectors in array S

NEIG A value indicating number of converged eigenvalues

NS A value containing the length o f the array containing eigenvectors, S

NQ An array containing the pointers of the beginning position of running

arrays and vectors to global vector R or W 

NUMLES A variable representing the number o f eigenvalues above or below

ZETA

NW A value containing the size o f the global working array

OLDETA An array containing elements o f orthogonality estimate of Lanczos 

vectors at step J -1
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OLDTUA An array containing elements of Orthogonality estimate of Ritz vectors

at step J-l

PROBE

SPREAD

START

Q

QA

R

RA

RES

RHO

RNM

RNM2

S

A variable used in subroutine ANALZT representing the outer end of 

the next subinterval to be updated

A working variable that is equal to THET(NDST)-THEY(1)

A value containing the eigenvalue bound, left bound when INC=1 and 

right bound when INC—1

An array containing elements of the current Lanczos vector 

An array containing elements o f the product o f mass matrix and 

Lanczos vector

A global array passed down from global array W; in some subroutine 

and functions, it will represent only first N  elements as the residual 

vector, (r}y

An array containing elements o f the product o f mass matrix and 

residual vector

A variable containing the noim of the residual of eigenvector 

A working array that is used in subroutine DEFLAT 

A value containing norm of {r}y 

A value containing RNM2

A three-dimension array containing Computed eigenvectors
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T

element

T

TAU

THET

TOL

W

WORK

Y

ZETA

A value used in subroutine MOVE1 representing the value of new

A temporaly array used by subroutine RTTVEC to hold previous 

Lanczos vector

An array containing elements o f orthogonality estimate of Ritz vectors 

at step J

An array containing exterior eigenvalues o f T, which are nearly 

converged Ritz values. THET(l) = current most left interval. 

THET(NDST)= current most right interval.

A value used by subroutine SUBTJ representing the tolerance o f two 

eigenvalues considered duplicate 

A global working array

An array containing elements o f  squares of array BET 

A Three-dimension array containing converged Ritz vector 

A value used in subroutine NEWCOR representing exterior bound of 

eigenvalue of T in THET(INDX)
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APPENDIX D 

EXAMPLES OF EIGENVALUE PROBLEM 

CALCULATION
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EXAMPLE I 

The dimension of concerned problem is 6 X 6.

' 2 - 1 0 0 0 0 ‘ "1 0 0 0 0 o'
- 1 2 - 1 0 0 0 0 1 0 0 0 0

0 - 1 2 - 1 0 0 0 0 1 0 0 0
0 0 - 1 2 - 1 0 0 0 0 1 0 0
0 0 0 - 1 2 - 1 0 0 0 0 1 0
0 0 0 0 - 1 2 0 0 0 0 0 1

The first few eigenvalues o f [Ar]{̂ } = X\M ]{^} can be calculated by Lanczos 

package program. Two files containing values of ] and [AT]’1 are stored in 

Lanczos Package subfolder named MDATA and KDATA consecutively. [AT]-1 is 

obtained from another matrix calculation package.

The input data required by Lanczos package are number of system’s 

dimension, maximum limit o f Lanczos steps and eigenvalues wanted. The initial 

vector is optional to be given by user. As shown below, the first three calculated 

eigenvalues of the system are 0.1980623, 0.7532398, 1.554958,2.4398140. These 

answers are acceptable accurate values comparing to the exact ones. The interface 

window shown below is interfacing sentence of Lanczos Package.
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EXAMPLE n

The dimension of concerned problem is 10 X 10.

2 -1 0 0 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0 0 0
0 -1 2 -1 0 0 0 0 0 0
0 0 -1 2 -1 0 0 0 0 0
0 0 0 -1 2 - 1 0 0 0 0
0 0 0 0 -1 2 -1 0 0 0
0 0 0 0 0 - 1 2 -1 0 0
0 0 0 0 0 0 -1 2 - 1 0
0 0 0 0 0 0 0 - 1 2 -1
0 0 0 0 0 0 0 0 - 1 2

And [M] is a identical matrix with 10X10 dimension.

The first few eigenvalues o f \k \$ }  = A.[M\<f>] can be calculated by Lanczos 

package program. The calculated eigenvalues are 0.08101405 and 0.3175191. Again, 

the results are acceptably accurate compared to the exact solution.
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